
CS 6210 Assignment 1 Due: 9/9/15 (Wed) at 11pm

Scoring for each problem is on a 0-to-5 scale ( 5 = complete success, 4 = overlooked a small detail, 3 = good job on
half the problem, 2 = OK job on half the problem, 1 = germ of a relevant solution idea, 0 = missed the point of the
problem.) Independent of this, one point will be deducted for insufficiently commented code. This will be automatic if
any function specification is inadequate, i.e., if the input and output parameters are not fully described. If test scripts
are supplied then they are posted on the course website http://www.cs.cornell.edu/courses/cs6210/2015fa/. All
solution M-Files must be submitted through the CMS system. You are allowed to discuss background issues with other
students, but the codes you submit must be your own. Never show your code to another student either directly or
indirectly.

Topics: Coding in Matlab, permutations, Matrix-Matrix products, Matrix-Vector Products, the SVD, the
Fast Haar Wavelet Transform.

1 New Diagonal

Assume that A ∈ IRn×n and that P = In(v, :) where v is a permutation of [ 1, 2, . . . , n ]. Write a Matlab

function d = NewDiag(A,v,k) that returns diag(B) where B = [P k]TAP k and P = In(v, :). Assume k ≥ 0.
Submit NewDiag to CMS. To get started, check out P T AP for a random n = 3 problem. Review §1.28-1.2.11.

2 Squaring a Hermitian Matrix.

A = B + iC ∈ Cn×n is Hermitian if it equals its conjugate transpose, i.e., aji = āij . It follows that the real
part B is symmetric (B = BT ) and the imaginary part C is skew-symmetric (BT = −B). Since the diagonal
of a real skew-symmetric matrix is zero we can represent an n-by-n complex Hermitian matrix with a single
real array. For example, if

A = B + i ·C +









b11 b12 b13 b14

b12 b22 b23 b24

b13 b23 b33 b34

b14 b24 b34 b44









+ i ·









0 −c21 −c31 −c41

c21 0 −c32 −c42

c31 c32 0 −c43

c41 c42 c43 0









then we can represent A with

Aherm =









b11 b12 b13 b14

c21 b22 b23 b24

c31 c32 b33 b34

c41 c42 c43 b44









.

We will call this the herm representation.

It is easy to verify that if A = B + iC is Hermitian, then

A2 = (B + iC)(B + iC) = (B · B − C · C) + i · (B · C + C · B)

is also Hermitian. Complete the following function so that it performs as specified:

function Y_herm = HermSquare(X_herm)

% X_herm is the herm representation of an nxn Hermitian matrix X

% Y_herm is the herm representation of the square of X

Note that if the structure of B and C is ignored, then three real matrix-matrix products are required giving an
algorithm that requires 6n2 flops. Submit your implementation of HermSquare to CMS. Your implementation
should exploit structure and reduce the “6” to a smaller number. What is that number? Include a comment
in your submission that indicates this number. Remember that Matlab supports inner products. Points will
be deducted if you compute inner products with loops. Finally, your implementation should only involve 2n2

storage. (A few extra work vectors are fine.) Hint. Given X herm, think about how would you assemble the
i-row of B and the ith row of C for a given i.

1



3 Computing a Certain Unit Vector

Suppose UT AV = Σ is the SVD of A ∈ IRn×n. Recall that if vk = V (:, k) and uk = U(:, k) and σ =
diag(σ1, . . . , σn), then

Avk = σkuk k = 1:n.

Given µ that satisfies σn ≤ µ ≤ σ1, our goal is to compute a unit 2-norm vector

x ∈ span{v1, vn}

so that
‖ Ax ‖

2
= µ.

In particular, implement the following function so that it performs as specified:

function x = SpecialVec(A,mu)

% A is nxn with SVD U*S*V’.

% mu is a real that satisfies S(n,n) <= mu <= S(1,1)

% x is a column n-vector with the property that (a) norm(x) = 1, (b) x is a

% linear combination of V(:,1) and V(:,n), and (c) norm(A*x) = mu.

Hint. Write x = cv1 + svn where c2 + s2 = 1 and solve for c and s. The solution is not unique–don’t worry
about it! Submit SpecialVec to CMS.

4 Compression Using Haar Wavelets

This problem is about the fast implementation of Haar Wavelet Transform y = Wnx that is outlined in §1.4.3.
The matrix Wn ∈ IRn×n is defined recursively:

Wn =















[

Wm ⊗

(

1
1

)

Im ⊗

(

1
−1

) ]

if n = 2m > 1

[ 1 ] if n = 1.

This means that n is a power of two. Here are some examples:

W2 =

[

1 1

1 −1

]

W4 =









1 1 1 0
1 1 −1 0

1 −1 0 1
1 −1 0 −1









W8 =

























1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0

1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1

























2



The matrix Wn has a special block structure that is exposed through the perfect shuffle permutation P2,m and
its inverse, the odd-even sort permutation PT

2,m. To see this suppose n = 8 and recall that

PT
2,4 = I8([1 3 5 7 2 4 6 8], :) =

























1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

























and observe that P2,mx = [x1, x3, x5, x7, x2, x4, x6, x8]
T = [x(1:2:n); x(2:2:n)]. It is easy to verify that

PT
2,4W8 =

























1 1 1 0 1 0 0 0
1 1 −1 0 0 1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 −1 0 0 0 1

1 1 1 0 −1 0 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 −1

























=

[

W4 I4

W4 −I4

]

.

In general, if n = 2m then

PT
2,mWn =

[

Wm Im

Wm −Im

]

. (1)

The Haar transform of x ∈ IRn is the matrix-vector product y = Wnx. The equation PT
2,my = PT

2,mWnx looks
like this:

[

y(1:2:n)

y(2:2:n)

]

=

[

Wm Im

Wm −Im

][

x(1:m)

x(m + 1:n)

]

=

[

Wmx(1:m) + x(m + 1:n)

Wmx(1:m) − x(m + 1:n)

]

This is the math behind the Fast Haar Wavelet Transform:

function y = FHT(x)

% y is a column n-vector that is the Haar transform of the column n-vector x.

% n is a power of two

if n==1

y = x;

else

m = n/2;

y = zeros(n,1);

z = FHT(x(1:m));

y(1:2:n) = z + x(m+1:n);

y(2:2:n) = z - x(m+1:n);

end

Note that if n = 2m and FHT requires fn flops when applied to an n-vector, then fn = fm + n. Since f2 = 2
we see that f4 = 2 + 4 = 6, f8 = 6 + 8 = 14, f16 = 14 + 16 = 30, etc. Proof-by-small-examples tells us that the
Fast Haar Transform is linear, in particular, Wnx involves 2n − 2 flops.

Now let’s consider the inverse Haar transform. Here we are given y ∈ IRn and wish to determine x ∈ IRn so
that y = Wnx. Let’s figure out W−1

n from equation (1) which we rewrite as

Wn = P2,m

[

Wm Im

Wm −Im

]

= P2,m

[

Im Im

Im −Im

][

Wm 0

0 Im

]

.

3



Taking the inverse of both sides and using the fact that (ABC)−1 = C−1B−1A−1 we see that

W−1

n =

[

W−1
m 0

0 Im

][

Im/2 Im/2

Im/2 −Im/2

]

PT
2,m

It follows that

x = W−1

n y =

[

W−1
m 0

0 Im

][

Im/2 Im/2

Im/2 −Im/2

]

PT
2,my

=

[

W−1

m 0

0 Im

][

Im/2 Im/2

Im/2 −Im/2

][

y(1:2:n)

y(2:2:n)

]

=

[

W−1
m 0

0 Im

][

(y(1:2:n) + y(2:2:n))/2

(y(1:2:n) − y(2:2:n))/2

]

=

[

W−1
m ((y(1:2:n) + y(2:2:n))/2)

(y(1:2:n) − y(2:2:n))/2

]

This is the math behind

function x = IFHT(y)

% x is a column n-vector that is the inverse Haar transform of the column n-vector y.

% n is a power of two

n = length(y);

if n==1

x = y;

else

yO = y(1:2:n);

yE = y(2:2:n);

x = [IFHT((yO+yE)/2) ; (yO-yE)/2];

end

If n = 2m and fn is the number of flops required when IFHT is applied to an n-vector, then fn = fm + 2n.
Since f2 = 3 it follows that f4 = 3 + 8 = 11, f8 = 11 + 16 = 27, f16 = 27 + 32 = 59, etc we conclude that
fn = 4n − 5.

We now proceed to describe the function that you are to write for this part of the assignment. It involves
playing with products of the form

Y = Wn1
XWT

n2
X ∈ IRn1×n2, Y ∈ IRn1×n2

where we assume that both n1 and n2 are powers of two. In particular, you are to write a function

function [Ytilde,CF] = HaarThreshApprox(Y,tau)

that returns the Haar threshold approximation Ỹ and the associated compression factor CF. To define the
matrix Ỹ , assume that X ∈ IRn1×n2 solves

Y = Wn1
XWT

n2
.

and that mX = max|xij|. Given τ satisfying 0 ≤ τ ≤ 1, the Haar threshold approximation is given by

Ỹ = Wn1
X̃WT

n2
(2)

where

x̃ij =







0 if|xij| ≤ τmX

xij otherwise
.

4



Thus, X̃ is obtained from X by setting its small elements to zero. An element is “small” if it is less than τ
times the largest element in X. The compression factor is the ratio n1n2/nz where nz is the number of nonzero
entries in X̃ . Depending on the matrix Y and the threshold parameter τ , the number of nonzeros in the matrix
X̃ may be much less than n1n2 rendering a large compression factor. Thus, we can think of Ỹ as a data sparse

representation of Y . If we are in possession of X̃ then we can reconstruct Ỹ from (2).
Before you start coding up HaarThreshApprox, develop answers to the following questions:

• How would you use IFHT to solve F = Wn1
G for G given F ?

• How would you use IFHT to solve F = GWT
n2

for G given F ? Hint. Take transposes.

• How would you use FHT to computeF = Wn1
G given G?

• How would you use FHT to computeF = GWn2
given G? Hint. Take transposes.

A test script P4 and the functions FHT and IFHT are provided on the course website. After you get things
working, develop vectorized versions of IFHT and FHT that can handle (without loops) matrix inputs. These
can be subfunctions of the finished HaarThreshApprox that you are to submit to CMS. No penalty for extra
matrix storage, but you might want to see how frugal you can be with memory. Finally, we mention that
nonrecursive implementations of FHT and IFHT are possible (but not required. See Problem 1.4.5.

5


