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PCG   Preconditioned Conjugate Gradients Method. 
 
    X = PCG(A,B) attempts to solve the system of linear equations A*X=B for 
    X. The N-by-N coefficient matrix A must be symmetric and positive 
    definite and the right hand side column vector B must have length N. 
  
    X = PCG(AFUN,B) accepts a function handle AFUN instead of the matrix A. 
    AFUN(X) accepts a vector input X and returns the matrix-vector product 
    A*X. In all of the following syntaxes, you can replace A by AFUN. 
  
    X = PCG(A,B,TOL) specifies the tolerance of the method. If TOL is [] 
    then PCG uses the default, 1e-6. 
  
    X = PCG(A,B,TOL,MAXIT) specifies the maximum number of iterations. If 
    MAXIT is [] then PCG uses the default, min(N,20). 
  
    X = PCG(A,B,TOL,MAXIT,M) and X = PCG(A,B,TOL,MAXIT,M1,M2) use symmetric 
    positive definite preconditioner M or M=M1*M2 and effectively solve the 
    system inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner 
    is not applied. M may be a function handle MFUN returning M\X. 
  
    X = PCG(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is 
    [] then PCG uses the default, an all zero vector. 
  
    [X,FLAG] = PCG(A,B,...) also returns a convergence FLAG: 
     0 PCG converged to the desired tolerance TOL within MAXIT iterations 
     1 PCG iterated MAXIT times but did not converge. 
     2 preconditioner M was ill-conditioned. 
     3 PCG stagnated (two consecutive iterates were the same). 
     4 one of the scalar quantities calculated during PCG became too 
       small or too large to continue computing. 
  
    [X,FLAG,RELRES] = PCG(A,B,...) also returns the relative residual 
    NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. 
  
    [X,FLAG,RELRES,ITER] = PCG(A,B,...) also returns the iteration number 
    at which X was computed: 0 <= ITER <= MAXIT. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = PCG(A,B,...) also returns a vector of the 
    residual norms at each iteration including NORM(B-A*X0). 
  
    Example: 
       n1 = 21; A = gallery('moler',n1);  b1 = A*ones(n1,1); 
       tol = 1e-6;  maxit = 15;  M = diag([10:-1:1 1 1:10]); 
       [x1,flag1,rr1,iter1,rv1] = pcg(A,b1,tol,maxit,M); 
    Or use this parameterized matrix-vector product function: 
       afun = @(x,n)gallery('moler',n)*x; 
       n2 = 21; b2 = afun(ones(n2,1),n2); 
       [x2,flag2,rr2,iter2,rv2] = pcg(@(x)afun(x,n2),b2,tol,maxit,M); 
  
    Class support for inputs A,B,M1,M2,X0 and the output of AFUN: 
       float: double 
 



SYMMLQ   Symmetric LQ Method. 
 
    X = SYMMLQ(A,B) attempts to solve the system of linear equations A*X=B 
    for X. The N-by-N coefficient matrix A must be symmetric but need not 
    be positive definite. The right hand side column vector B must have 
    length N. 
  
    X = SYMMLQ(AFUN,B) accepts a function handle AFUN instead of the matrix 
    A. AFUN(X) accepts a vector input X and returns the matrix-vector 
    product A*X. In all of the following syntaxes, you can replace A by 
    AFUN. 
  
    X = SYMMLQ(A,B,TOL) specifies the tolerance of the method. If TOL is [] 
    then SYMMLQ uses the default, 1e-6. 
  
    X = SYMMLQ(A,B,TOL,MAXIT) specifies the maximum number of iterations. 
    If MAXIT is [] then SYMMLQ uses the default, min(N,20). 
  
    X = SYMMLQ(A,B,TOL,MAXIT,M) and X = SYMMLQ(A,B,TOL,MAXIT,M1,M2) use the 
    symmetric positive definite preconditioner M or M=M1*M2 and effectively 
    solve the system inv(sqrt(M))*A*inv(sqrt(M))*Y = inv(sqrt(M))*B for Y 
    and then return X = inv(sqrt(M))*Y. If M is [] then a preconditioner is 
    not applied. M may be a function handle returning M\X. 
  
    X = SYMMLQ(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 
    is [] then SYMMLQ uses the default, an all zero vector. 
  
    [X,FLAG] = SYMMLQ(A,B,...) also returns a convergence FLAG: 
     0 SYMMLQ converged to the desired tolerance TOL within MAXIT iterations. 
     1 SYMMLQ iterated MAXIT times but did not converge. 
     2 preconditioner Mwas ill-conditioned. 
     3 SYMMLQ stagnated (two consecutive iterates were the same). 
     4 one of the scalar quantities calculated during SYMMLQ became 
       too small or too large to continue computing. 
     5 preconditioner M was not symmetric positive definite. 
  
    [X,FLAG,RELRES] = SYMMLQ(A,B,...) also returns the relative residual 
    NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. 
  
    [X,FLAG,RELRES,ITER] = SYMMLQ(A,B,...) also returns the iteration 
    number at which X was computed: 0 <= ITER <= MAXIT. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = SYMMLQ(A,B,...) also returns a vector of 
    of estimates of the SYMMLQ residual norms at each iteration, including 
    NORM(B-A*X0). 
  
    [X,FLAG,RELRES,ITER,RESVEC,RESVECCG] = SYMMLQ(A,B,...) also returns a 
    vector of estimates of the Conjugate Gradients residual norms at each 
    iteration. 
  
    Example: 
       n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -2*on],-1:1,n,n); 
       b = sum(A,2); tol = 1e-10; maxit = 50; M = spdiags(4*on,0,n,n); 
       x = symmlq(A,b,tol,maxit,M); 
    Or, use this matrix-vector product function 
       %-------------------------------% 
       function y = afun(x,n) 
       y = 4 * x; 
       y(2:n) = y(2:n) - 2 * x(1:n-1); 
       y(1:n-1) = y(1:n-1) - 2 * x(2:n); 
       %-------------------------------% 
    as input to SYMMLQ: 
       x1 = symmlq(@(x)afun(x,n),b,tol,maxit,M); 



MINRES   Minimum Residual Method. 
 
    X = MINRES(A,B) attempts to find a minimum norm residual solution X to 
    the system of linear equations A*X=B. The N-by-N coefficient matrix A 
    must be symmetric but need not be positive definite. The right hand 
    side column vector B must have length N. 
  
    X = MINRES(AFUN,B) accepts a function handle AFUN instead of the matrix 
    A. AFUN(X) accepts a vector input X and returns the matrix-vector 
    product A*X. In all of the following syntaxes, you can replace A by 
    AFUN. 
  
    X = MINRES(A,B,TOL) specifies the tolerance of the method. If TOL is [] 
    then MINRES uses the default, 1e-6. 
  
    X = MINRES(A,B,TOL,MAXIT) specifies the maximum number of iterations. 
    If MAXIT is [] then MINRES uses the default, min(N,20). 
  
    X = MINRES(A,B,TOL,MAXIT,M) and X = MINRES(A,B,TOL,MAXIT,M1,M2) use 
    symmetric positive definite preconditioner M or M=M1*M2 and effectively 
    solve the system inv(sqrt(M))*A*inv(sqrt(M))*Y = inv(sqrt(M))*B for Y 
    and then return X = inv(sqrt(M))*Y. If M is [] then a preconditioner is 
    not applied.  M may be a function handle returning M\X. 
  
    X = MINRES(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 
    is [] then MINRES uses the default, an all zero vector. 
  
    [X,FLAG] = MINRES(A,B,...) also returns a convergence FLAG: 
     0 MINRES converged to the desired tolerance TOL within MAXIT iterations. 
     1 MINRES iterated MAXIT times but did not converge. 
     2 preconditioner M was ill-conditioned. 
     3 MINRES stagnated (two consecutive iterates were the same). 
     4 one of the scalar quantities calculated during MINRES became 
       too small or too large to continue computing. 
     5 preconditioner M was not symmetric positive definite. 
  
    [X,FLAG,RELRES] = MINRES(A,B,...) also returns the relative residual 
    NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. 
  
    [X,FLAG,RELRES,ITER] = MINRES(A,B,...) also returns the iteration 
    number at which X was computed: 0 <= ITER <= MAXIT. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = MINRES(A,B,...) also returns a vector of 
    estimates of the MINRES residual norms at each iteration, including 
    NORM(B-A*X0). 
  
    [X,FLAG,RELRES,ITER,RESVEC,RESVECCG] = MINRES(A,B,...) also returns a 
    a vector of estimates of the Conjugate Gradients residual norms at each 
    iteration. 
  
    Example: 
       n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -2*on],-1:1,n,n); 
       b = sum(A,2); tol = 1e-10; maxit = 50; M = spdiags(4*on,0,n,n); 
       x = minres(A,b,tol,maxit,M); 
    Or, use this matrix-vector product function 
       %-------------------------------% 
       function y = afun(x,n) 
       y = 4 * x; 
       y(2:n) = y(2:n) - 2 * x(1:n-1); 
       y(1:n-1) = y(1:n-1) - 2 * x(2:n); 
       %-------------------------------% 
    as input to MINRES: 
       x1 = minres(@(x)afun(x,n),b,tol,maxit,M); 



LSQR   LSQR Method. 
 
    X = LSQR(A,B) attempts to solve the system of linear equations A*X=B 
    for X if A is consistent, otherwise it attempts to solve the least 
    squares solution X that minimizes norm(B-A*X). The M-by-N coefficient 
    matrix A need not be square but the right hand side column vector B 
    must have length M. 
  
    X = LSQR(AFUN,B) accepts a function handle AFUN instead of the matrix A. 
    AFUN(X,'notransp') accepts a vector input X and returns the 
    matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all 
    of the following syntaxes, you can replace A by AFUN. 
  
    X = LSQR(A,B,TOL) specifies the tolerance of the method. If TOL is [] 
    then LSQR uses the default, 1e-6. 
  
    X = LSQR(A,B,TOL,MAXIT) specifies the maximum number of iterations. If 
    MAXIT is [] then LSQR uses the default, min([M,N,20]). 
  
    X = LSQR(A,B,TOL,MAXIT,M1) and LSQR(A,B,TOL,MAXIT,M1,M2) use N-by-N 
    preconditioner M or M = M1*M2 and effectively solve the system 
    A*inv(M)*Y = B for Y, where X = M*Y. If M is [] then a preconditioner 
    is not applied. M may be a function handle MFUN such that 
    MFUN(X,'notransp') returns M\X and MFUN(X,'transp') returns M'\X. 
  
    X = LSQR(A,B,TOL,MAXIT,M1,M2,X0) specifies the N-by-1 initial guess. If 
    X0 is [] then LSQR uses the default, an all zero vector. 
  
    [X,FLAG] = LSQR(A,B,...) also returns a convergence FLAG: 
     0 LSQR converged to the desired tolerance TOL within MAXIT iterations. 
     1 LSQR iterated MAXIT times but did not converge. 
     2 preconditioner M was ill-conditioned. 
     3 LSQR stagnated (two consecutive iterates were the same). 
     4 one of the scalar quantities calculated during LSQR became too 
       small or too large to continue computing. 
  
    [X,FLAG,RELRES] = LSQR(A,B,...) also returns estimates of the relative 
    residual NORM(B-A*X)/NORM(B). If RELRES <= TOL, then X is a 
    consistent solution to A*X=B. If FLAG is 0 but RELRES > TOL, then X is 
    the least squares solution which minimizes norm(B-A*X). 
  
    [X,FLAG,RELRES,ITER] = LSQR(A,B,...) also returns the iteration number 
    at which X was computed: 0 <= ITER <= MAXIT. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = LSQR(A,B,...) also returns a vector of 
    estimates of the residual norm at each iteration including NORM(B-A*X0). 
  
    [X,FLAG,RELRES,ITER,RESVEC,LSVEC] = LSQR(A,B,...) also returns a vector 
    of least squares estimates at each iteration: 
    NORM((A*inv(M))'*(B-A*X))/NORM(A*inv(M),'fro'). Note the estimate of 
    NORM(A*inv(M),'fro') changes, and hopefully improves, at each iteration. 
  
    Example: 
       n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -on],-1:1,n,n); 
       b = sum(A,2); tol = 1e-8; maxit = 15; 
       M1 = spdiags([on/(-2) on],-1:0,n,n);  M2 = spdiags([4*on -on],0:1,n,n); 
       x = lsqr(A,b,tol,maxit,M1,M2); 
    Or, use this matrix-vector product function 
       %-----------------------------------% 
       function y = afun(x,n,transp_flag) 
       if strcmp(transp_flag,'transp') 
          y = 4 * x; y(1:n-1) = y(1:n-1) - 2 * x(2:n); y(2:n) = y(2:n) - x(1:n-1); 
       elseif strcmp(transp_flag,'notransp') 
          y = 4 * x;  y(2:n) = y(2:n) - 2 * x(1:n-1); y(1:n-1) = y(1:n-1) - x(2:n); 
       end 
       %-----------------------------------% 
    as input to LSQR: 
       x1 = lsqr(@(x,tflag)afun(x,n,tflag),b,tol,maxit,M1,M2); 



GMRES   Generalized Minimum Residual Method. 
 
    X = GMRES(A,B) attempts to solve the system of linear equations A*X = B 
    for X.  The N-by-N coefficient matrix A must be square and the right 
    hand side column vector B must have length N. This uses the unrestarted 
    method with MIN(N,10) total iterations. 
  
    X = GMRES(AFUN,B) accepts a function handle AFUN instead of the matrix 
    A. AFUN(X) accepts a vector input X and returns the matrix-vector 
    product A*X. In all of the following syntaxes, you can replace A by 
    AFUN. 
  
    X = GMRES(A,B,RESTART) restarts the method every RESTART iterations. 
    If RESTART is N or [] then GMRES uses the unrestarted method as above. 
  
    X = GMRES(A,B,RESTART,TOL) specifies the tolerance of the method.  If 
    TOL is [] then GMRES uses the default, 1e-6. 
  
    X = GMRES(A,B,RESTART,TOL,MAXIT) specifies the maximum number of outer 
    iterations. Note: the total number of iterations is RESTART*MAXIT. If 
    MAXIT is [] then GMRES uses the default, MIN(N/RESTART,10). If RESTART 
    is N or [] then the total number of iterations is MAXIT. 
  
    X = GMRES(A,B,RESTART,TOL,MAXIT,M) and 
    X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2) use preconditioner M or M=M1*M2 
    and effectively solve the system inv(M)*A*X = inv(M)*B for X. If M is 
    [] then a preconditioner is not applied.  M may be a function handle 
    returning M\X. 
  
    X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0) specifies the first initial 
    guess. If X0 is [] then GMRES uses the default, an all zero vector. 
  
    [X,FLAG] = GMRES(A,B,...) also returns a convergence FLAG: 
     0 GMRES converged to the desired tolerance TOL within MAXIT iterations. 
     1 GMRES iterated MAXIT times but did not converge. 
     2 preconditioner M was ill-conditioned. 
     3 GMRES stagnated (two consecutive iterates were the same). 
  
    [X,FLAG,RELRES] = GMRES(A,B,...) also returns the relative residual 
    NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. Note with 
    preconditioners M1,M2, the residual is NORM(M2\(M1\(B-A*X))). 
  
    [X,FLAG,RELRES,ITER] = GMRES(A,B,...) also returns both the outer and 
    inner iteration numbers at which X was computed: 0 <= ITER(1) <= MAXIT 
    and 0 <= ITER(2) <= RESTART. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = GMRES(A,B,...) also returns a vector of 
    the residual norms at each inner iteration, including NORM(B-A*X0). 
    Note with preconditioners M1,M2, the residual is NORM(M2\(M1\(B-A*X))). 
  
    Example: 
       n = 21; A = gallery('wilk',n);  b = sum(A,2); 
       tol = 1e-12;  maxit = 15; M = diag([10:-1:1 1 1:10]); 
       x = gmres(A,b,10,tol,maxit,M); 
    Or, use this matrix-vector product function 
       %-----------------------------------------------------------------% 
       function y = afun(x,n) 
       y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x+[x(2:n); 0]; 
       %-----------------------------------------------------------------% 
    and this preconditioner backsolve function 
       %------------------------------------------% 
       function y = mfun(r,n) 
       y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)']; 
       %------------------------------------------% 
    as inputs to GMRES: 
       x1 = gmres(@(x)afun(x,n),b,10,tol,maxit,@(x)mfun(x,n)); 



QMR   Quasi-Minimal Residual Method. 
 
    X = QMR(A,B) attempts to solve the system of linear equations A*X=B for 
    X. The N-by-N coefficient matrix A must be square and the right hand 
    side column vector B must have length N. 
  
    X = QMR(AFUN,B) accepts a function handle AFUN instead of the matrix A. 
    AFUN(X,'notransp') accepts a vector input X and returns the 
    matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all 
    of the following syntaxes, you can replace A by AFUN. 
  
    X = QMR(A,B,TOL) specifies the tolerance of the method. If TOL is [] 
    then QMR uses the default, 1e-6. 
  
    X = QMR(A,B,TOL,MAXIT) specifies the maximum number of iterations. If 
    MAXIT is [] then QMR uses the default, min(N,20). 
  
    X = QMR(A,B,TOL,MAXIT,M) and X = QMR(A,B,TOL,MAXIT,M1,M2) use 
    preconditioners M or M=M1*M2 and effectively solve the system 
    inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner is not 
    applied. M may be a function handle MFUN such that MFUN(X,'notransp') 
    returns M\X and MFUN(X,'transp') returns M'\X. 
  
    X = QMR(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is 
    [] then QMR uses the default, an all zero vector. 
  
    [X,FLAG] = QMR(A,B,...) also returns a convergence FLAG: 
     0 QMR converged to the desired tolerance TOL within MAXIT iterations. 
     1 QMR iterated MAXIT times but did not converge. 
     2 preconditioner M was ill-conditioned. 
     3 QMR stagnated (two consecutive iterates were the same). 
     4 one of the scalar quantities calculated during QMR became too 
       small or too large to continue computing. 
  
    [X,FLAG,RELRES] = QMR(A,B,...) also returns the relative residual 
    NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. 
  
    [X,FLAG,RELRES,ITER] = QMR(A,B,...) also returns the iteration number 
    at which X was computed: 0 <= ITER <= MAXIT. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = QMR(A,B,...) also returns a vector of the 
    residual norms at each iteration, including NORM(B-A*X0). 
  
    Example: 
       n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -on],-1:1,n,n); 
       b = sum(A,2); tol = 1e-8; maxit = 15; 
       M1 = spdiags([on/(-2) on],-1:0,n,n); 
       M2 = spdiags([4*on -on],0:1,n,n); 
       x = qmr(A,b,tol,maxit,M1,M2,[]); 
    Or, use this matrix-vector product function 
       %------------------------------------% 
       function y = afun(x,n,transp_flag) 
       if strcmp(transp_flag,'transp') 
          y = 4 * x; 
          y(1:n-1) = y(1:n-1) - 2 * x(2:n); 
          y(2:n) = y(2:n) - x(1:n-1); 
       elseif strcmp(transp_flag,'notransp') 
          y = 4 * x; 
          y(2:n) = y(2:n) - 2 * x(1:n-1); 
          y(1:n-1) = y(1:n-1) - x(2:n); 
       end 
       %------------------------------------% 
    as input to QMR: 
       x1 = qmr(@(x,tflag)afun(x,n,tflag),b,tol,maxit,M1,M2); 
 



BICG   BiConjugate Gradients Method. 
 
    X = BICG(A,B) attempts to solve the system of linear equations A*X=B 
    for X.  The N-by-N coefficient matrix A must be square and the right 
    hand side column vector B must have length N. 
  
    X = BICG(AFUN,B) accepts a function handle AFUN instead of the matrix A. 
    AFUN(X,'notransp') accepts a vector input X and returns the 
    matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all 
    of the following syntaxes, you can replace A by AFUN. 
  
    X = BICG(A,B,TOL) specifies the tolerance of the method.  If TOL is [] 
    then BICG uses the default, 1e-6. 
  
    X = BICG(A,B,TOL,MAXIT) specifies the maximum number of iterations.  If 
    MAXIT is [] then BICG uses the default, min(N,20). 
  
    X = BICG(A,B,TOL,MAXIT,M) and X = BICG(A,B,TOL,MAXIT,M1,M2) use the 
    preconditioner M or M=M1*M2 and effectively solve the system 
    inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner is not 
    applied. M may be a function handle MFUN such that MFUN(X,'notransp') 
    returns M\X and MFUN(X,'transp') returns M'\X. 
  
    X = BICG(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is 
    [] then BICG uses the default, an all zero vector. 
  
    [X,FLAG] = BICG(A,B,...) also returns a convergence FLAG: 
     0 BICG converged to the desired tolerance TOL within MAXIT iterations 
     1 BICG iterated MAXIT times but did not converge. 
     2 preconditioner M was ill-conditioned. 
     3 BICG stagnated (two consecutive iterates were the same). 
     4 one of the scalar quantities calculated during BICG became 
       too small or too large to continue computing. 
  
    [X,FLAG,RELRES] = BICG(A,B,...) also returns the relative residual 
    NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. 
  
    [X,FLAG,RELRES,ITER] = BICG(A,B,...) also returns the iteration number 
    at which X was computed: 0 <= ITER <= MAXIT. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = BICG(A,B,...) also returns a vector of 
    the residual norms at each iteration including NORM(B-A*X0). 
  
    Example: 
       n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -on],-1:1,n,n); 
       b = sum(A,2); tol = 1e-8; maxit = 15; 
       M1 = spdiags([on/(-2) on],-1:0,n,n); 
       M2 = spdiags([4*on -on],0:1,n,n); 
       x = bicg(A,b,tol,maxit,M1,M2); 
    Or, use this matrix-vector product function 
       %---------------------------------------------% 
       function y = afun(x,n,transp_flag) 
       if strcmp(transp_flag,'transp')      % y = A'*x 
          y = 4 * x; 
          y(1:n-1) = y(1:n-1) - 2 * x(2:n); 
          y(2:n) = y(2:n) - x(1:n-1); 
       elseif strcmp(transp_flag,'notransp') % y = A*x 
          y = 4 * x; 
          y(2:n) = y(2:n) - 2 * x(1:n-1); 
          y(1:n-1) = y(1:n-1) - x(2:n); 
       end 
       %---------------------------------------------% 
    as input to BICG: 
       x1 = bicg(@(x,tflag)afun(x,n,tflag),b,tol,maxit,M1,M2); 
 
 



BICGSTAB   BiConjugate Gradients Stabilized Method. 
 
    X = BICGSTAB(A,B) attempts to solve the system of linear equations 
    A*X=B for X. The N-by-N coefficient matrix A must be square and the 
    right hand side column vector B must have length N.% 
  
    X = BICGSTAB(AFUN,B) accepts a function handle AFUN instead of the 
    matrix A. AFUN(X) accepts a vector input X and returns the 
    matrix-vector product A*X. In all of the following syntaxes, you can 
    replace A by AFUN. 
  
    X = BICGSTAB(A,B,TOL) specifies the tolerance of the method. If TOL is 
    [] then BICGSTAB uses the default, 1e-6. 
  
    X = BICGSTAB(A,B,TOL,MAXIT) specifies the maximum number of iterations. 
    If MAXIT is [] then BICGSTAB uses the default, min(N,20). 
  
    X = BICGSTAB(A,B,TOL,MAXIT,M) and X = BICGSTAB(A,B,TOL,MAXIT,M1,M2) use 
    preconditioner M or M=M1*M2 and effectively solve the system 
    inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner is not 
    applied. M may be a function handle returning M\X. 
  
    X = BICGSTAB(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess.  If 
    X0 is [] then BICGSTAB uses the default, an all zero vector. 
  
    [X,FLAG] = BICGSTAB(A,B,...) also returns a convergence FLAG: 
     0 BICGSTAB converged to the desired tolerance TOL within MAXIT iterations. 
     1 BICGSTAB iterated MAXIT times but did not converge. 
     2 preconditioner M was ill-conditioned. 
     3 BICGSTAB stagnated (two consecutive iterates were the same). 
     4 one of the scalar quantities calculated during BICGSTAB became 
       too small or too large to continue computing. 
  
    [X,FLAG,RELRES] = BICGSTAB(A,B,...) also returns the relative residual 
    NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. 
  
    [X,FLAG,RELRES,ITER] = BICGSTAB(A,B,...) also returns the iteration 
    number at which X was computed: 0 <= ITER <= MAXIT. ITER may be an 
    integer + 0.5, indicating convergence half way through an iteration. 
  
    [X,FLAG,RELRES,ITER,RESVEC] = BICGSTAB(A,B,...) also returns a vector 
    of the residual norms at each half iteration, including NORM(B-A*X0). 
  
    Example: 
       n = 21; A = gallery('wilk',n);  b = sum(A,2); 
       tol = 1e-12;  maxit = 15; M = diag([10:-1:1 1 1:10]); 
       x = bicgstab(A,b,tol,maxit,M); 
    Or, use this matrix-vector product function 
       %-----------------------------------------------------------------% 
       function y = afun(x,n) 
       y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x+[x(2:n); 0]; 
       %-----------------------------------------------------------------% 
    and this preconditioner backsolve function 
       %------------------------------------------% 
       function y = mfun(r,n) 
       y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)']; 
       %------------------------------------------% 
    as inputs to BICGSTAB: 
       x1 = bicgstab(@(x)afun(x,n),b,tol,maxit,@(x)mfun(x,n)); 
 



LUINC  Sparse Incomplete LU factorization. 
 
    LUINC produces two different kinds of incomplete LU factorizations -- the 
    drop tolerance and the 0 level of fill-in factorizations.  These factors 
    may be useful as preconditioners for a system of linear equations being 
    solved by an iterative method such as BICG (BiConjugate Gradients). 
  
    LUINC(X,DROPTOL) performs the incomplete LU factorization of 
    X with drop tolerance DROPTOL. 
  
    LUINC(X,OPTS) allows additional options to the incomplete LU 
    factorization.  OPTS is a structure with up to four fields: 
        droptol --- the drop tolerance of incomplete LU 
        milu    --- modified incomplete LU 
        udiag   --- replace zeros on the diagonal of U 
        thresh  --- the pivot threshold (see also LU) 
  
    Only the fields of interest need to be set. 
  
    droptol is a non-negative scalar used as the drop 
    tolerance for the incomplete LU factorization.  This factorization 
    is computed in the same (column-oriented) manner as the 
    LU factorization except after each column of L and U has 
    been calculated, all entries in that column which are smaller 
    in magnitude than the local drop tolerance, which is  
    droptol * NORM of the column of X, are "dropped" from L or U. 
    The only exception to this dropping rule is the diagonal of the 
    upper triangular factor U which remains even if it is too small. 
    Note that entries of the lower triangular factor L are tested 
    before being scaled by the pivot.  Setting droptol = 0 
    produces the complete LU factorization, which is the default. 
  
    milu stands for modified incomplete LU factorization.  Its 
    value is either 0 (unmodified, the default) or 1 (modified). 
    Instead of discarding those entries from the newly-formed 
    column of the factors, they are subtracted from the diagonal 
    of the upper triangular factor, U. 
  
    udiag is either 0 or 1.  If it is 1, any zero diagonal entries 
    of the upper triangular factor U are replaced by the local drop 
    tolerance in an attempt to avoid a singular factor.  The default 
    is 0. 
  
    thresh is a pivot threshold in [0,1].  Pivoting occurs 
    when the diagonal entry in a column has magnitude less 
    than thresh times the magnitude of any sub-diagonal entry in 
    that column.  thresh = 0 forces diagonal pivoting.  thresh = 1 is 
    the default. 
  
    Example: 
  
       load west0479 
       A = west0479; 
       nnz(A) 
       nnz(lu(A)) 
       nnz(luinc(A,1e-6)) 
  
       This shows that A has 1887 nonzeros, its complete LU factorization 
       has 16777 nonzeros, and its incomplete LU factorization with a 
       drop tolerance of 1e-6 has 10311 nonzeros. 
  
  
    [L,U,P] = LUINC(X,'0') produces the incomplete LU factors of a sparse 
    matrix with 0 level of fill-in (i.e. no fill-in).  L is unit lower 
    trianglar, U is upper triangular and P is a permutation matrix.  U has the 
    same sparsity pattern as triu(P*X).  L has the same sparsity pattern as 
    tril(P*X), except for 1's on the diagonal of L where P*X may be zero.  Both 
    L and U may have a zero because of cancellation where P*X is nonzero.  L*U 
    differs from P*X only outside of the sparsity pattern of P*X. 
  
    [L,U] = LUINC(X,'0') produces upper triangular U and L is a permutation of 



    unit lower triangular matrix.  Thus no comparison can be made between the 
    sparsity patterns of L,U and X, although nnz(L) + nnz(U) = nnz(X) + n.  L*U 
    differs from X only outside of its sparsity pattern. 
  
    LU = LUINC(X,'0') returns "L+U-I", where L is unit lower triangular, U is 
    upper triangular and the permutation information is lost. 
  
    Example: 
  
       load west0479 
       A = west0479; 
       [L,U,P] = luinc(A,'0'); 
       isequal(spones(U),spones(triu(P*A))) 
       spones(L) ~= spones(tril(P*A)) 
       D = (L*U) .* spones(P*A) - P*A 
  
       spones(L) differs from spones(tril(P*A)) at some positions on the 
       diagonal and at one position in L where cancellation zeroed out a 
       nonzero element of P*A.  The entries of D are of the order of eps. 
  
    LUINC works only for sparse matrices. 
 



CHOLINC  Sparse Incomplete Cholesky and Cholesky-Infinity 
factorizations. 
 
    CHOLINC produces two different kinds of incomplete Cholesky factorizations 
    -- the drop tolerance and the 0 level of fill-in factorizations.  These 
    factors may be useful as preconditioners for a symmetric positive definite 
    system of linear equations being solved by an iterative method such as PCG 
    (Preconditioned Conjugate Gradients). 
  
    R = CHOLINC(X,DROPTOL) performs the incomplete Cholesky factorization of 
    X, with drop tolerance DROPTOL. 
  
    R = CHOLINC(X,OPTS) allows additional options to the incomplete Cholesky 
    factorization.  OPTS is a structure with up to three fields: 
        DROPTOL --- the drop tolerance of the incomplete factorization 
        MICHOL  --- modified incomplete Cholesky 
        RDIAG   --- replace zeros on the diagonal of R 
  
    Only the fields of interest need to be set. 
  
    DROPTOL is a non-negative scalar used as the drop tolerance for the 
    incomplete Cholesky factorization.  This factorization is computed by 
    performing the incomplete LU factorization with the pivot threshold option 
    set to 0 (which forces diagonal pivoting) and then scaling the rows of the 
    incomplete upper triangular factor, U, by the square root of the 
    diagonal entries in that column.  Since the nonzero entries U(I,J) are 
    bounded below by DROPTOL*NORM(X(:,J)) (see LUINC), the nonzero 
    entries R(I,J) are bounded below by DROPTOL*NORM(X(:,J))/R(I,I). 
    Setting DROPTOL = 0 produces the complete Cholesky factorization, 
    which is the default. 
  
    MICHOL stands for modified incomplete Cholesky factorization.  Its 
    value is either 0 (unmodified, the default) or 1 (modified).  This 
    performs the modified incomplete LU factorization of X and then scales 
    the returned upper triangular factor as described above. 
  
    RDIAG is either 0 or 1.  If it is 1, any zero diagonal entries 
    of the upper triangular factor R are replaced by the square root of 
    the local drop tolerance in an attempt to avoid a singular factor.  The 
    default is 0. 
  
    Example: 
  
       A = delsq(numgrid('C',25)); 
       nnz(A) 
       nnz(chol(A)) 
       nnz(cholinc(A,1e-3)) 
  
       This shows that A has 2063 nonzeros, its complete Cholesky factorization 
       has 8513 nonzeros, and its incomplete Cholesky factorization with a 
       drop tolerance of 1e-3 has 4835 nonzeros. 
  
  
    R = CHOLINC(X,'0') produces the incomplete Cholesky factor of a real 
    symmetric positive definite sparse matrix with 0 level of fill-in (i.e. no 
    fill-in).  The upper triangular R has the same sparsity pattern as 
    triu(X), although R may be zero in some positions where X is nonzero due 
    to cancellation.  The lower triangle of X is assumed to be the transpose 
    of the upper.  Note that the positive definiteness of X does not guarantee 
    the existence of a factor with the required sparsity.  An error message 
    results if the factorization is not possible.  R'*R agrees with X over its 
    sparsity pattern. 
  
    [R,p] = CHOLINC(X,'0'), with two output arguments, never produces an 
    error message.  If R exists, then p is 0.   But if the incomplete 
    factor does not exist, then p is a positive integer and R is an upper 
    triangular matrix of size q-by-n where q = p-1 so that the sparsity 
    pattern of R is that of the q-by-n upper triangle of X.  R'*R agrees with 
    X over the sparsity pattern of its first q rows and first q columns. 
  



    Example: 
  
       A = delsq(numgrid('N',10)); 
       R = cholinc(A,'0'); 
       isequal(spones(R), spones(triu(A))) 
  
       A(8,8) = 0; 
       [R2,p] = cholinc(A,'0'); 
       isequal(spones(R2), spones(triu(A(1:p-1,:)))) 
  
       D = (R'*R) .* spones(A) - A; 
  
       D has entries of the order of eps. 
  
  
    R = CHOLINC(X,'inf') produces the Cholesky-Infinity factorization.  This 
    factorization is based on the Cholesky factorization, and handles real 
    positive semi-definite matrices as well.  It may be useful for finding 
    some sort of solution to systems which arise in primal-dual interior-point 
    method problems.  When a zero pivot is encountered in the ordinary 
    Cholesky factorization, the diagonal of the Cholesky-Infinity factor is set 
    to Inf and the rest of that row is set to 0.  This is designed to force a 0 
    in the corresponding entry of the solution vector in the associated system 
    of linear equations.  In practice, X is assumed to be positive 
    semi-definite so even negative pivots are replaced by Inf. 
  
    Example: This symmetric sparse matrix is singular, so the Cholesky 
        factorization fails at the zero pivot in the third row.  But cholinc 
        succeeds in computing all rows of the Cholesky-Infinity factorization. 
  
        S = sparse([ 1     0     3     0; 
                     0    25     0    30; 
                     3     0     9     0; 
                     0    30     0   661 ]); 
        [R,p] = chol(S); 
        Rinf = cholinc(S,'inf'); 
  
    CHOLINC works only for sparse matrices. 


