Matlab's Krylov Methods Library

For

Large Sparse

Ax = b Problems

PCG
 Preconditioned Conjugate Gradients Method.

$X=\operatorname{PCG}(A, B)$ attempts to solve the system of linear equations $A * X=B$ for X. The N-by-N coefficient matrix A must be symmetric and positive definite and the right hand side column vector B must have length N.
$X=$ PCG(AFUN,B) accepts a function handle AFUN instead of the matrix A. AFUN(X) accepts a vector input X and returns the matrix-vector product A*X. In all of the following syntaxes, you can replace A by AFUN.
$X=P C G(A, B, T O L)$ specifies the tolerance of the method. If TOL is [] then PCG uses the default, 1e-6.
$X=$ PCG(A,B,TOL,MAXIT) specifies the maximum number of iterations. If MAXIT is [] then PCG uses the default, min(N,20).
$X=$ PCG(A, B, TOL, MAXIT, M) and $X=$ PCG(A, B,TOL,MAXIT, M1, M2) use symmetric positive definite preconditioner M or M=M1*M2 and effectively solve the system $\operatorname{inv}(M)^{*} A^{*} X=\operatorname{inv}(M) * B$ for X. If M is [] then a preconditioner is not applied. M may be a function handle MFUN returning M\X.
$X=\operatorname{PCG}(A, B, T O L, M A X I T, M 1, M 2, X 0)$ specifies the initial guess. If X0 is [] then PCG uses the default, an all zero vector.
[X,FLAG] = PCG(A,B,...) also returns a convergence FLAG:
0 PCG converged to the desired tolerance TOL within MAXIT iterations
1 PCG iterated MAXIT times but did not converge.
2 preconditioner M was ill-conditioned.
3 PCG stagnated (two consecutive iterates were the same).
4 one of the scalar quantities calculated during PCG became too small or too large to continue computing.
[X,FLAG,RELRES] = PCG(A,B,...) also returns the relative residual NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL.
[X,FLAG, RELRES, ITER] $=\operatorname{PCG}(A, B, \ldots)$ also returns the iteration number at which X was computed: 0 <= ITER <= MAXIT.
[X,FLAG,RELRES, ITER,RESVEC] $=$ PCG(A,B,...) also returns a vector of the residual norms at each iteration including NORM(B-A*X0).

Example: $\mathrm{n} 1=21 ; \mathrm{A}=$ gallery('moler', n 1$) ; \mathrm{b} 1=\mathrm{A}^{*}$ ones(n1,1); tol $=1 \mathrm{e}-6 ; \quad$ maxit $=15 ; \quad M=\operatorname{diag}([10:-1: 111: 10])$; [x1,flag1, rr1,iter1, rv1] = pcg(A, b1,tol, maxit, M);
Or use this parameterized matrix-vector product function: afun $=$ @(x, n) gallery('moler', n$){ }^{*} \mathrm{x}$; $\mathrm{n} 2=21 ; \mathrm{b} 2=\operatorname{afun}(\operatorname{ones}(\mathrm{n} 2,1), \mathrm{n} 2)$; $[x 2, f l a g 2, r r 2, i t e r 2, r v 2]=\mathrm{pcg}(@(x) \operatorname{afun}(x, n 2), b 2$, tol, maxit, M);

Class support for inputs $\mathrm{A}, \mathrm{B}, \mathrm{M} 1, \mathrm{M} 2, \mathrm{X} 0$ and the output of AFUN :
float: double
$X=\operatorname{SYMMLQ}(A, B)$ attempts to solve the system of linear equations $A * X=B$ for X. The N-by-N coefficient matrix A must be symmetric but need not be positive definite. The right hand side column vector B must have length N.
$X=\operatorname{SYMMLQ}(A F U N, B)$ accepts a function handle AFUN instead of the matrix A. AFUN(X) accepts a vector input X and returns the matrix-vector product A*X. In all of the following syntaxes, you can replace A by AFUN.
$X=\operatorname{SYMMLQ}(A, B, T O L)$ specifies the tolerance of the method. If TOL is [] then SYMMLQ uses the default, 1e-6.
$X=S Y M M L Q(A, B, T O L, M A X I T)$ specifies the maximum number of iterations. If MAXIT is [] then SYMMLQ uses the default, min(N,20).
$X=\operatorname{SYMMLQ}(A, B, T O L, M A X I T, M)$ and $X=\operatorname{SYMMLQ}(A, B, T O L, M A X I T, M 1, M 2)$ use the symmetric positive definite preconditioner M or M=M1*M2 and effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*Y = inv(sqrt(M))*B for Y and then return $X=$ inv(sqrt(M))*Y. If M is [] then a preconditioner is not applied. M may be a function handle returning M\X.

X = SYMMLQ(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is [] then SYMMLQ uses the default, an all zero vector.
[X,FLAG] = SYMMLQ(A, B,...) also returns a convergence FLAG:
0 SYMMLQ converged to the desired tolerance TOL within MAXIT iterations.
1 SYMMLQ iterated MAXIT times but did not converge.
2 preconditioner Mwas ill-conditioned.
3 SYMMLQ stagnated (two consecutive iterates were the same).
4 one of the scalar quantities calculated during SYMMLQ became too small or too large to continue computing.
5 preconditioner M was not symmetric positive definite.
[X,FLAG,RELRES] = SYMMLQ(A,B,...) also returns the relative residual NORM (B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL.
[X,FLAG,RELRES, ITER] = SYMMLQ(A, B, ...) also returns the iteration number at which X was computed: $0<=$ ITER <= MAXIT.
[X,FLAG,RELRES, ITER,RESVEC] = SYMMLQ(A, B, ...) also returns a vector of of estimates of the SYMMLQ residual norms at each iteration, including NORM (B-A*X0).
[X,FLAG,RELRES, ITER,RESVEC,RESVECCG] = SYMMLQ(A,B,...) also returns a vector of estimates of the Conjugate Gradients residual norms at each iteration.

Example:
$n=100 ;$ on $=$ ones($n, 1) ; A=\operatorname{spdiags([-2*on~4*on~-2*on],-1:1,n,n);~}$ $b=\operatorname{sum}(A, 2) ;$ tol $=1 e-10 ;$ maxit $=50 ; M=\operatorname{spdiags}\left(4^{*} o n, 0, n, n\right)$; $x=\operatorname{symmlq}(A, b$, tol, maxit, $M)$;
Or, use this matrix-vector product function
\%------------------------------\%
function $y=\operatorname{afun}(x, n)$
$y=4$ * x;
$y(2: n)=y(2: n)-2{ }^{*} x(1: n-1)$;
$y(1: n-1)=y(1: n-1)-2$ * $x(2: n)$;
$\%-------------------------\frac{1}{2}$
as input to SYMMLQ: $x 1=\operatorname{symmlq}(@(x) \operatorname{afun}(x, n), b$, tol, maxit, $M)$;
$X=\operatorname{MINRES}(A, B)$ attempts to find a minimum norm residual solution X to the system of linear equations $A^{*} X=B$. The $N-b y-N$ coefficient matrix A must be symmetric but need not be positive definite. The right hand side column vector B must have length N.

X = MINRES(AFUN, B) accepts a function handle AFUN instead of the matrix A. AFUN(X) accepts a vector input X and returns the matrix-vector product A*X. In all of the following syntaxes, you can replace A by AFUN.
$X=\operatorname{MINRES}(A, B, T O L)$ specifies the tolerance of the method. If TOL is [] then MINRES uses the default, 1e-6.

X = MINRES(A, B, TOL,MAXIT) specifies the maximum number of iterations. If MAXIT is [] then MINRES uses the default, min(N,20).
$X=\operatorname{MINRES}(A, B, T O L, M A X I T, M)$ and $X=\operatorname{MINRES(A,B,TOL,MAXIT,M1,M2)~use~}$ symmetric positive definite preconditioner M or M=M1*M2 and effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*Y = inv(sqrt(M))*B for Y and then return $X=$ inv(sqrt(M))*Y. If M is [] then a preconditioner is not applied. M may be a function handle returning $M \backslash X$.

X = MINRES(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is [] then MINRES uses the default, an all zero vector.
[X,FLAG] = MINRES(A, B, ...) also returns a convergence FLAG:
0 MINRES converged to the desired tolerance TOL within MAXIT iterations.
1 MINRES iterated MAXIT times but did not converge.
2 preconditioner M was ill-conditioned.
3 MINRES stagnated (two consecutive iterates were the same).
4 one of the scalar quantities calculated during MINRES became too small or too large to continue computing.
5 preconditioner M was not symmetric positive definite.
[X,FLAG,RELRES] = MINRES(A, B, ...) also returns the relative residual NORM (B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL.
[X,FLAG,RELRES,ITER] = MINRES(A, B,...) also returns the iteration number at which X was computed: $0<=$ ITER <= MAXIT.
[X,FLAG,RELRES, ITER,RESVEC] = MINRES(A, B, ...) also returns a vector of estimates of the MINRES residual norms at each iteration, including NORM (B-A*X0).

```
[X,FLAG,RELRES,ITER,RESVEC,RESVECCG] = MINRES(A,B,...) also returns a
a vector of estimates of the Conjugate Gradients residual norms at each
iteration.
Example:
        n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
        b = sum(A,2); tol = 1e-10; maxit = 50; M = spdiags(4*on,0,n,n);
        x = minres(A,b,tol,maxit,M);
Or, use this matrix-vector product function
        %-----------------------------%
        function y = afun(x,n)
        y = 4 * x;
        y(2:n) = y(2:n) - 2 * x(1:n-1);
        y(1:n-1) = y(1:n-1) - 2 * x(2:n);
        %------------------------------%
as input to MINRES:
        x1 = minres(@(x)afun(x,n),b,tol,maxit,M);
```

$X=\operatorname{LSQR}(A, B)$ attempts to solve the system of linear equations $A * X=B$ for X if A is consistent, otherwise it attempts to solve the least squares solution X that minimizes norm ($B-A^{*} X$). The $M-b y-N$ coefficient matrix A need not be square but the right hand side column vector B must have length M.

X = LSQR(AFUN,B) accepts a function handle AFUN instead of the matrix A. AFUN(X,'notransp') accepts a vector input X and returns the matrix-vector product $A^{*} X$ while $A F U N(X, ' t r a n s p ')$ returns $A^{\prime *} X$. In all of the following syntaxes, you can replace A by AFUN.
$X=\operatorname{LSQR}(A, B, T O L)$ specifies the tolerance of the method. If TOL is [] then LSQR uses the default, 1e-6.
X = LSQR(A,B,TOL,MAXIT) specifies the maximum number of iterations. If MAXIT is [] then LSQR uses the default, min([M,N,20]).

X = LSQR(A, B, TOL, MAXIT,M1) and LSQR(A,B,TOL,MAXIT,M1,M2) use N-by-N preconditioner M or $M=M 1 * M 2$ and effectively solve the system A*inv(M)*Y = B for Y, where $X=M *$. If M is [] then a preconditioner is not applied. M may be a function handle MFUN such that MFUN(X,'notransp') returns M\X and MFUN(X,'transp') returns M'\X.

X = LSQR(A,B,TOL,MAXIT,M1,M2,X0) specifies the N-by-1 initial guess. If X0 is [] then LSQR uses the default, an all zero vector.
[X,FLAG] = LSQR(A,B,...) also returns a convergence FLAG:
0 LSQR converged to the desired tolerance TOL within MAXIT iterations.
1 LSQR iterated MAXIT times but did not converge.
2 preconditioner M was ill-conditioned.
3 LSQR stagnated (two consecutive iterates were the same).
4 one of the scalar quantities calculated during LSQR became too small or too large to continue computing.
[X,FLAG,RELRES] = LSQR(A,B,...) also returns estimates of the relative residual $\operatorname{NORM}\left(B-A^{*} X\right) / \operatorname{NORM}(B)$. If RELRES $<=$ TOL, then X is a
consistent solution to $A^{*} X=B$. If FLAG is 0 but RELRES > TOL, then X is the least squares solution which minimizes norm($\left.B-A^{*} X\right)$.
[X,FLAG,RELRES, ITER] = LSQR(A,B,...) also returns the iteration number at which X was computed: 0 <= ITER <= MAXIT.
[X,FLAG,RELRES, ITER,RESVEC] = LSQR(A,B,...) also returns a vector of estimates of the residual norm at each iteration including NORM (B-A*X0).
[X,FLAG,RELRES, ITER,RESVEC,LSVEC] = LSQR(A,B,...) also returns a vector of least squares estimates at each iteration:
NORM((A*inv(M))'*(B-A*X))/NORM(A*inv(M),'fro'). Note the estimate of NORM (A*inv(M),'fro') changes, and hopefully improves, at each iteration.

Example:
$\mathrm{n}=100$; on $=$ ones($\mathrm{n}, 1) ; \mathrm{A}=$ spdiags([-2*on 4^{*} on -on$\left.],-1: 1, \mathrm{n}, \mathrm{n}\right)$;
b = sum(A, 2); tol = 1e-8; maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n); M2 = spdiags([4*on -on],0:1,n,n);
$x=1 s q r(A, b, t o l, m a x i t, M 1, M 2)$;

Or, use this matrix-vector product function
function $y=\operatorname{afun}\left(x, n, t r a n s p _f l a g\right)$
if strcmp(transp_flag,'transp')
$y=4^{*} x ; y(1: n-1)=y(1: n-1)-2{ }^{*} x(2: n) ; y(2: n)=y(2: n)-x(1: n-1) ;$
elseif strcmp(transp_flag,'notransp')
$y=4{ }^{*} x ; y(2: n)=y(2: n)-2 * x(1: n-1) ; y(1: n-1)=y(1: n-1)-x(2: n) ;$
end
\%-----------------------------------\%
as input to LSQR:
x 1 = lsqr(@(x,tflag)afun(x,n,tflag),b,tol,maxit,M1, M2);

GMRES Generalized Minimum Residual Method.

$X=\operatorname{GMRES}(\mathrm{A}, \mathrm{B})$ attempts to solve the system of linear equations A * $\mathrm{X}=\mathrm{B}$ for X. The $N-b y-N$ coefficient matrix A must be square and the right hand side column vector B must have length N. This uses the unrestarted method with MIN(N,10) total iterations.

X = GMRES(AFUN, B) accepts a function handle AFUN instead of the matrix A. AFUN(X) accepts a vector input X and returns the matrix-vector product A*X. In all of the following syntaxes, you can replace A by AFUN.

X = GMRES(A, B,RESTART) restarts the method every RESTART iterations. If RESTART is N or [] then GMRES uses the unrestarted method as above.
 TOL is [] then GMRES uses the default, 1e-6.

X = GMRES(A,B,RESTART,TOL,MAXIT) specifies the maximum number of outer iterations. Note: the total number of iterations is RESTART*MAXIT. If MAXIT is [] then GMRES uses the default, MIN(N/RESTART,10). If RESTART is N or [] then the total number of iterations is MAXIT.
$X=\operatorname{GMRES}(A, B, R E S T A R T, T O L, M A X I T, M)$ and
X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2) use preconditioner M or M=M1*M2 and effectively solve the system inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner is not applied. M may be a function handle returning M\X.

X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0) specifies the first initial guess. If X0 is [] then GMRES uses the default, an all zero vector.
[X,FLAG] = GMRES(A,B,...) also returns a convergence FLAG:
0 GMRES converged to the desired tolerance TOL within MAXIT iterations.
1 GMRES iterated MAXIT times but did not converge.
2 preconditioner M was ill-conditioned.
3 GMRES stagnated (two consecutive iterates were the same).
[X,FLAG,RELRES] = GMRES(A,B,...) also returns the relative residual NORM (B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. Note with preconditioners M1, M2, the residual is NORM(M2 $\operatorname{N(M1\backslash (B-A^{*}X))).}$
[X,FLAG,RELRES, ITER] $=\operatorname{GMRES}(A, B, \ldots)$ also returns both the outer and inner iteration numbers at which X was computed: $0<=\operatorname{ITER}(1)<=$ MAXIT and 0 <= ITER(2) <= RESTART.
[X,FLAG,RELRES, ITER,RESVEC] = GMRES(A,B,...) also returns a vector of the residual norms at each inner iteration, including NORM (B-A*X0). Note with preconditioners M1, M2, the residual is NORM(M2
(M1
(B-A*X))).

Example:
$\mathrm{n}=21 ; \mathrm{A}=$ gallery('wilk',n); $\mathrm{b}=\operatorname{sum}(\mathrm{A}, 2)$;
tol $=1 \mathrm{e}-12 ;$ maxit $=15 ; ~ M=\operatorname{diag}([10:-1: 111: 10])$; $x=$ gmres(A, b, 10, tol, maxit, M);
Or, use this matrix-vector product function

function $y=\operatorname{afun}(x, n)$
$y=[0 ; x(1: n-1)]+[((n-1) / 2:-1: 0) ' ;(1:(n-1) / 2) '] .{ }^{*} x+[x(2: n) ; 0] ;$

and this preconditioner backsolve function

function $y=m f u n(r, n)$
$y=r . /[((n-1) / 2:-1: 1) ' ; 1 ;(1:(n-1) / 2) '] ;$
\%---(\%
as inputs to GMRES: x1 = gmres(@(x)afun(x,n),b,10,tol,maxit,@(x)mfun(x,n));
$X=\operatorname{QMR}(A, B)$ attempts to solve the system of linear equations $A^{*} X=B$ for X. The $N-b y-N$ coefficient matrix A must be square and the right hand side column vector B must have length N.
$X=\operatorname{QMR}(A F U N, B)$ accepts a function handle AFUN instead of the matrix A. AFUN(X, 'notransp') accepts a vector input X and returns the matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all of the following syntaxes, you can replace A by AFUN.
$X=\operatorname{QMR}(A, B, T O L)$ specifies the tolerance of the method. If TOL is [] then QMR uses the default, 1e-6.

X = QMR(A,B,TOL,MAXIT) specifies the maximum number of iterations. If MAXIT is [] then QMR uses the default, min($N, 20$).

```
X = QMR(A,B,TOL,MAXIT,M) and X = QMR(A,B,TOL,MAXIT,M1,M2) use
preconditioners M or M=M1*M2 and effectively solve the system
inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner is not
applied. M may be a function handle MFUN such that MFUN(X,'notransp')
returns M\X and MFUN(X,'transp') returns M'\X.
X = QMR(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is
[] then QMR uses the default, an all zero vector.
[X,FLAG] = QMR(A,B,...) also returns a convergence FLAG:
    0 QMR converged to the desired tolerance TOL within MAXIT iterations.
    1 QMR iterated MAXIT times but did not converge.
    2 preconditioner M was ill-conditioned.
    3 QMR stagnated (two consecutive iterates were the same).
    4 one of the scalar quantities calculated during QMR became too
        small or too large to continue computing.
[X,FLAG,RELRES] = QMR(A,B,...) also returns the relative residual
NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL.
```

[X,FLAG,RELRES,ITER] $=\operatorname{QMR}(A, B, \ldots)$ also returns the iteration number
at which X was computed: 0 <= ITER <= MAXIT.
[X,FLAG,RELRES, ITER,RESVEC] = QMR(A,B,...) also returns a vector of the
residual norms at each iteration, including NORM(B-A*X0).
Example:
$\mathrm{n}=100 ;$ on $=$ ones($\mathrm{n}, 1) ; \mathrm{A}=$ spdiags([-2*on 4^{*} on -on$\left.],-1: 1, \mathrm{n}, \mathrm{n}\right)$;
$b=\operatorname{sum}(A, 2) ;$ tol $=1 \mathrm{e}-8 ; \operatorname{maxit}=15$;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on], $0: 1, n, n)$;
$x=\operatorname{qmr}(A, b$, tol, maxit,M1,M2, []);
Or, use this matrix-vector product function
\%----------------------------------\%
function $y=\operatorname{afun}\left(x, n, t r a n s p _f l a g\right)$
if strcmp(transp_flag,'transp')
$y=4$ * x ;
$y(1: n-1)=y(1: n-1)-2{ }^{*} x(2: n) ;$
$y(2: n)=y(2: n)-x(1: n-1) ;$
elseif strcmp(transp_flag,'notransp')
$y=4$ * x;
$y(2: n)=y(2: n)-2{ }^{*} x(1: n-1) ;$
$y(1: n-1)=y(1: n-1)-x(2: n) ;$
end
\%------------------------------------\%
as input to QMR:
$\mathrm{x} 1=\mathrm{qmr}(@(\mathrm{x}, \mathrm{tflag}) \operatorname{afun}(\mathrm{x}, \mathrm{n}, \mathrm{tflag}), \mathrm{b}$, tol,maxit, M1, M2);
$X=B I C G(A, B)$ attempts to solve the system of linear equations $A * X=B$ for X. The $N-b y-N$ coefficient matrix A must be square and the right hand side column vector B must have length N.

X = BICG(AFUN,B) accepts a function handle AFUN instead of the matrix A. AFUN(X,'notransp') accepts a vector input X and returns the matrix-vector product $A^{*} X$ while $A F U N(X, ' t r a n s p ')$ returns $A^{\prime *} X$. In all of the following syntaxes, you can replace A by AFUN.
$X=B I C G(A, B, T O L)$ specifies the tolerance of the method. If TOL is [] then BICG uses the default, 1e-6.
$X=$ BICG(A,B,TOL,MAXIT) specifies the maximum number of iterations. If MAXIT is [] then BICG uses the default, min(N,20).

```
X = BICG(A,B,TOL,MAXIT,M) and X = BICG(A,B,TOL,MAXIT,M1,M2) use the
preconditioner M or M=M1*M2 and effectively solve the system
inv(M)*A*X = inv(M)*B for X. If M is [] then a preconditioner is not
applied. M may be a function handle MFUN such that MFUN(X,'notransp')
returns M\X and MFUN(X,'transp') returns M'\X.
X = BICG(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If X0 is
[] then BICG uses the default, an all zero vector.
[X,FLAG] = BICG(A,B,...) also returns a convergence FLAG:
    0 BICG converged to the desired tolerance TOL within MAXIT iterations
    1 BICG iterated MAXIT times but did not converge.
    2 preconditioner M was ill-conditioned.
    3 BICG stagnated (two consecutive iterates were the same).
    4 one of the scalar quantities calculated during BICG became
        too small or too large to continue computing.
[X,FLAG,RELRES] = BICG(A,B,...) also returns the relative residual
NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL.
```

[X,FLAG,RELRES, ITER] = BICG(A, B,...) also returns the iteration number
at which X was computed: 0 <= ITER <= MAXIT.
[X,FLAG,RELRES, ITER,RESVEC] = BICG(A, B, ...) also returns a vector of
the residual norms at each iteration including NORM(B-A*X0).
Example:
$\mathrm{n}=100 ;$ on $=$ ones(n,1); $A=$ spdiags([-2*on 4*on -on],-1:1,n,n);
$b=\operatorname{sum}(A, 2) ;$ tol $=1 \mathrm{e}-8 ; \operatorname{maxit}=15$;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on], 0:1,n,n);
$x=\operatorname{bicg}(A, b, t o l$, maxit, M1, M2);
Or, use this matrix-vector product function

function $y=\operatorname{afun}\left(x, n, t r a n s p _f l a g\right)$
if strcmp(transp_flag,'transp') \% y = A'*x
$y=4$ * x;
$y(1: n-1)=y(1: n-1)-2{ }^{*} x(2: n)$;
$y(2: n)=y(2: n)-x(1: n-1) ;$
elseif strcmp(transp_flag,'notransp') \% y = A*x
$y=4$ * x;
$y(2: n)=y(2: n)-2{ }^{*} x(1: n-1)$;
$y(1: n-1)=y(1: n-1)-x(2: n) ;$
end

as input to BICG:
x1 = bicg(@(x,tflag)afun(x,n,tflag),b,tol,maxit,M1, M2);

BICGSTAB BiConjugate Gradients Stabilized Method.

X = BICGSTAB(A,B) attempts to solve the system of linear equations $A^{*} X=B$ for X. The $N-b y-N$ coefficient matrix A must be square and the right hand side column vector B must have length N.\%

X = BICGSTAB(AFUN,B) accepts a function handle AFUN instead of the matrix A. AFUN (X) accepts a vector input X and returns the matrix-vector product $A^{*} X$. In all of the following syntaxes, you can replace A by AFUN.
X = BICGSTAB(A, B, TOL) specifies the tolerance of the method. If TOL is [] then BICGSTAB uses the default, 1e-6.
$X=$ BICGSTAB(A, B,TOL,MAXIT) specifies the maximum number of iterations. If MAXIT is [] then BICGSTAB uses the default, min(N,20).
$X=\operatorname{BICGSTAB}(A, B, T O L, M A X I T, M)$ and $X=\operatorname{BICGSTAB(A,B,TOL,MAXIT,M1,M2)}$ use preconditioner M or $M=M 1 * M 2$ and effectively solve the system inv $(M){ }^{*} A^{*} X=\operatorname{inv}(M) * B$ for X. If M is [] then a preconditioner is not applied. M may be a function handle returning $M \backslash X$.
$X=$ BICGSTAB(A,B,TOL,MAXIT,M1,M2,X0) specifies the initial guess. If
X0 is [] then BICGSTAB uses the default, an all zero vector.
$[X, F L A G]=\operatorname{BICGSTAB}(A, B, \ldots)$ also returns a convergence FLAG:
0 BICGSTAB converged to the desired tolerance TOL within MAXIT iterations.
1 BICGSTAB iterated MAXIT times but did not converge.
2 preconditioner M was ill-conditioned.
3 BICGSTAB stagnated (two consecutive iterates were the same).
4 one of the scalar quantities calculated during BICGSTAB became too small or too large to continue computing.
[X,FLAG,RELRES] = BICGSTAB(A, B,...) also returns the relative residual NORM (B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL.
[X,FLAG,RELRES, ITER] = BICGSTAB(A, B,...) also returns the iteration number at which X was computed: $0<=$ ITER <= MAXIT. ITER may be an integer + 0.5, indicating convergence half way through an iteration.
[X,FLAG,RELRES, ITER,RESVEC] = BICGSTAB(A, B,...) also returns a vector of the residual norms at each half iteration, including NORM(B-A*X0).

Example:

$\mathrm{n}=21 ; \mathrm{A}=$ gallery('wilk',n); $\mathrm{b}=\operatorname{sum}(\mathrm{A}, 2)$;
tol $=1 \mathrm{e}-12 ;$ maxit $=15 ; \mathrm{M}=\operatorname{diag}([10:-1: 111: 10])$;
x = bicgstab(A,b,tol,maxit, M);
Or, use this matrix-vector product function

function $y=\operatorname{afun}(x, n)$
$\left.y=[0 ; x(1: n-1)]+[((n-1) / 2:-1: 0) ' ;(1:(n-1) / 2)]^{\prime}\right] x+[x(2: n) ; 0] ;$

and this preconditioner backsolve function
 function $y=m f u n(r, n)$ $y=r . /[((n-1) / 2:-1: 1) ' ; 1 ;(1:(n-1) / 2) '] ;$

as inputs to BICGSTAB:
$x 1=$ bicgstab(@(x)afun(x,n),b,tol,maxit,@(x)mfun(x,n));

LUINC Sparse Incomplete LU factorization.

LUINC produces two different kinds of incomplete LU factorizations -- the drop tolerance and the 0 level of fill-in factorizations. These factors may be useful as preconditioners for a system of linear equations being solved by an iterative method such as BICG (BiConjugate Gradients).

LUINC(X, DROPTOL) performs the incomplete LU factorization of X with drop tolerance DROPTOL.

LUINC(X,OPTS) allows additional options to the incomplete LU
factorization. OPTS is a structure with up to four fields:
droptol --- the drop tolerance of incomplete LU
milu --- modified incomplete LU
udiag --- replace zeros on the diagonal of U
thresh --- the pivot threshold (see also LU)
Only the fields of interest need to be set.
droptol is a non-negative scalar used as the drop
tolerance for the incomplete LU factorization. This factorization
is computed in the same (column-oriented) manner as the
LU factorization except after each column of L and U has
been calculated, all entries in that column which are smaller
in magnitude than the local drop tolerance, which is
droptol * NORM of the column of X, are "dropped" from L or U.
The only exception to this dropping rule is the diagonal of the
upper triangular factor U which remains even if it is too small.
Note that entries of the lower triangular factor L are tested before being scaled by the pivot. Setting droptol $=0$ produces the complete LU factorization, which is the default.
milu stands for modified incomplete LU factorization. Its value is either 0 (unmodified, the default) or 1 (modified). Instead of discarding those entries from the newly-formed column of the factors, they are subtracted from the diagonal of the upper triangular factor, U.
udiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper triangular factor U are replaced by the local drop tolerance in an attempt to avoid a singular factor. The default is 0.
thresh is a pivot threshold in [0,1]. Pivoting occurs
when the diagonal entry in a column has magnitude less
than thresh times the magnitude of any sub-diagonal entry in
that column. thresh $=0$ forces diagonal pivoting. thresh $=1$ is the default.

Example:
load west0479
A = west0479;
nnz (A)
nnz(lu(A))
nnz(luinc(A,1e-6))
This shows that A has 1887 nonzeros, its complete LU factorization has 16777 nonzeros, and its incomplete LU factorization with a drop tolerance of $1 e-6$ has 10311 nonzeros.
[L,U,P] = LUINC(X,'0') produces the incomplete LU factors of a sparse matrix with 0 level of fill-in (i.e. no fill-in). L is unit lower trianglar, U is upper triangular and P is a permutation matrix. U has the same sparsity pattern as triu($\left.P^{*} X\right)$. L has the same sparsity pattern as tril $\left(P^{*} X\right)$, except for 1 's on the diagonal of L where $P^{*} X$ may be zero. Both L and U may have a zero because of cancellation where $P * X$ is nonzero. $L * U$ differs from $\mathrm{P}^{*} \mathrm{X}$ only outside of the sparsity pattern of $\mathrm{P}^{*} \mathrm{X}$.
$[L, U]=\operatorname{LUINC}\left(X,{ }^{\prime} 0^{\prime}\right)$ produces upper triangular U and L is a permutation of
unit lower triangular matrix. Thus no comparison can be made between the sparsity patterns of L, U and X, although $n n z(L)+n n z(U)=n n z(X)+n$. $L * U$ differs from X only outside of its sparsity pattern.

LU = LUINC(X,'0') returns "L+U-I", where L is unit lower triangular, U is upper triangular and the permutation information is lost.

Example:
load west0479
A = west0479;
[L, U, P] = luinc(A, '0');
isequal(spones(U), spones(triu(P*A)))
spones(L) ~= spones(tril(P*A))
$D=(L * U) . * \operatorname{spones}\left(P^{*} A\right)-P * A$
spones(L) differs from spones(tril(P*A)) at some positions on the
diagonal and at one position in L where cancellation zeroed out a nonzero element of $P * A$. The entries of D are of the order of eps.

LUINC works only for sparse matrices.

CHOLINC Sparse Incomplete Cholesky and Cholesky-Infinity factorizations.

CHOLINC produces two different kinds of incomplete Cholesky factorizations -- the drop tolerance and the 0 level of fill-in factorizations. These factors may be useful as preconditioners for a symmetric positive definite system of linear equations being solved by an iterative method such as PCG (Preconditioned Conjugate Gradients).
$R=C H O L I N C(X, D R O P T O L)$ performs the incomplete Cholesky factorization of X, with drop tolerance DROPTOL.

R = CHOLINC(X,OPTS) allows additional options to the incomplete Cholesky factorization. OPTS is a structure with up to three fields:

DROPTOL --- the drop tolerance of the incomplete factorization
MICHOL --- modified incomplete Cholesky
RDIAG --- replace zeros on the diagonal of R
Only the fields of interest need to be set.
DROPTOL is a non-negative scalar used as the drop tolerance for the incomplete Cholesky factorization. This factorization is computed by performing the incomplete LU factorization with the pivot threshold option set to 0 (which forces diagonal pivoting) and then scaling the rows of the incomplete upper triangular factor, U, by the square root of the diagonal entries in that column. Since the nonzero entries $U(I, J)$ are bounded below by DROPTOL*NORM (X(:,J)) (see LUINC), the nonzero
entries $R(I, J)$ are bounded below by $\operatorname{DROPTOL*NORM(X(:,J))/R(I,I).~}$
Setting DROPTOL $=0$ produces the complete Cholesky factorization, which is the default.

MICHOL stands for modified incomplete Cholesky factorization. Its value is either 0 (unmodified, the default) or 1 (modified). This performs the modified incomplete LU factorization of X and then scales the returned upper triangular factor as described above.

RDIAG is either 0 or 1 . If it is 1 , any zero diagonal entries of the upper triangular factor R are replaced by the square root of the local drop tolerance in an attempt to avoid a singular factor. The default is 0.

Example:

```
A = delsq(numgrid('C',25));
nnz(A)
nnz(chol(A))
nnz(cholinc(A,1e-3))
```

This shows that A has 2063 nonzeros, its complete Cholesky factorization has 8513 nonzeros, and its incomplete Cholesky factorization with a drop tolerance of $1 e-3$ has 4835 nonzeros.

R = CHOLINC(X,'0') produces the incomplete Cholesky factor of a real
symmetric positive definite sparse matrix with 0 level of fill-in (i.e. no fill-in). The upper triangular R has the same sparsity pattern as triu(X), although R may be zero in some positions where X is nonzero due to cancellation. The lower triangle of X is assumed to be the transpose of the upper. Note that the positive definiteness of X does not guarantee the existence of a factor with the required sparsity. An error message results if the factorization is not possible. R'*R agrees with X over its sparsity pattern.
[R, p$]=\operatorname{CHOLINC}\left(\mathrm{X}, \mathrm{'}^{\prime} \mathrm{C}^{\prime}\right)$, with two output arguments, never produces an error message. If R exists, then p is 0. But if the incomplete factor does not exist, then p is a positive integer and R is an upper triangular matrix of size $q-b y-n$ where $q=p-1$ so that the sparsity pattern of R is that of the q-by-n upper triangle of X. $R^{\prime *}$ R agrees with X over the sparsity pattern of its first q rows and first q columns.

Example:
$A=$ delsq(numgrid('N',10));
R = cholinc(A,'0');
isequal(spones(R), spones(triu(A)))
$A(8,8)=0 ;$
[R2, p$]=$ cholinc(A,'0');
isequal(spones(R2), spones(triu(A(1:p-1,:))))
$D=\left(R^{\prime *} R\right)$.* spones(A) - A;
D has entries of the order of eps.

R = CHOLINC(X,'inf') produces the Cholesky-Infinity factorization. This factorization is based on the Cholesky factorization, and handles real positive semi-definite matrices as well. It may be useful for finding some sort of solution to systems which arise in primal-dual interior-point method problems. When a zero pivot is encountered in the ordinary Cholesky factorization, the diagonal of the Cholesky-Infinity factor is set to Inf and the rest of that row is set to 0 . This is designed to force a 0 in the corresponding entry of the solution vector in the associated system of linear equations. In practice, X is assumed to be positive semi-definite so even negative pivots are replaced by Inf.

Example: This symmetric sparse matrix is singular, so the Cholesky
factorization fails at the zero pivot in the third row. But cholinc succeeds in computing all rows of the Cholesky-Infinity factorization.

S = sparse([1	0	3	0 ;
	0	25	0	30;
	3	0	9	0 ;
	0	30	0	661]);

$[R, p]=\operatorname{chol}(S) ;$
Rinf = cholinc(S,'inf');
CHOLINC works only for sparse matrices.

