
CS 6210: Assignment 2

Due: Friday, September 17, 2010 (In Class or in Upson 5153 by 4pm)

Scoring for each problem is on a 0-to-5 scale ( 5 = complete success, 4 = overlooked a small detail, 3 = good start, 2 = right

idea, 1 = germ of the right idea, 0 = missed the point of the problem.) One point will be deducted for insufficiently commented

code. Unless otherwise stated, you are expected to utilize fully Matlab’s vectorizing capability subject to the constraint of

being flop-efficient. Test drivers and related material are posted at http://www.cs.cornell.edu/courses/cs6210/2010fa/. For

each problem submit output and a listing of all scripts/functions that you had to write in order to produce the output. You

are allowed to discuss background issues with other students, but the codes you submit must be your own.

P1. (Product Triangular System Solver)

Suppose S, T ∈ IRn×n are upper triangular and that (ST −λI)x = b is a nonsingular system. Write a function
x = ProdTriSol(S,T,lambda,b) that can be used to solve such systems. Submit listing and output when
the test script P1 is run. Successful implementations will be vectorized and involve O(n2) flops. Note that
the explicit formation of ST − λI requires O(n3) flops.

Hint. Suppose

S+ =
[

σ uT

0 Sc

]
, T+ =

[
τ vT

0 Tc

]
, b+ =

[
β
bc

]

where S+ = S(k:n, k:n), T+ = T (k:n, k:n), b+ = b(k:n), and σ, τ, β ∈ IR. If xc satisfies

(ScTc − λI)xc = bc

and wc = Tcxc is available, then it can be shown that

x+ =
[

γ
xc

]
γ =

β − σvT xc − uT wc

στ − λ

solves (S+T+ − λI)x+ = b+. Observe that x+ and w+ = T+x+ can be obtained from xc and wc in O(n− k)
flops.

P2. (Perturbing Stochastic Matrices)

Suppose A ∈ IRn×n is a nonsingular matrix with the property that the column sums are one and that each
entry satisfies 0 < aij < 1. This means that A is stochastic, each entry being a probability. Suppose k is
an integer that satisfies 1 ≤ k ≤ n and that θ is a real number. Define the matrix A(θ, k) to be exactly the
same as A except that

Column k of A(θ, k) =

⎡
⎣ μA(1:k − 1, k)

θakk

μA(k + 1:n, k)

⎤
⎦

where μ is chosen so that sum of the values in this column is one. Can we choose θ from the interval [0, 1/akk]
so that A(θ, k) is singular? In other words, is there a θ so that A(θ, k) is singular and stochastic?

Begin your investigation by determining u ∈ IRn so that A(θ, k) = A + ueT
k where ek is the kth column

of the n-by-n identity In. This shows that A(θ, k) is a rank-1 modification of the identity. Using the
Sherman-Morrison formula, it can be shown that A(θ, k) is singular if and only if

eT
k A−1u = −1.

This formula can be used to develop a formula for the unique θ that makes A(θ, k) singular. You are no
ready to implement the following function:



function thetaVals = MakeSing(A)
% A is an n-by-n matrix with unit column sums and entries that satisfy 0 < A(i,j) < 1.
% thetaVals is a column n-vector with the property that A(thetaVals(k),k) is singular
% for k=1:n.

Test your implementation by running the script P2. Use “\” to solve triangular linear systems. Submit
output and a listing of your implementation.

P3. (Rays Through a Polygon)

Let’s shoot some rays through a polygon:

We assume that the rays originate at (0,0) and that (0,0) is not inside the polygon. For each ray we want
to compute the polygon-ray intersection points and the length of that portion of the ray that is inside the
polygon. To that end, implement the following function

function [d,u,v] = InsideDist(x,y,theta)
% x and y are column n-vectors (n>=3).
% Let P be the polygon displayed by plot([x;x(1)],[y;y(1)]).
% Assume that (i) the (x(k),y(k)) are distinct, (ii) the edges of P do not cross,
% and (iii) (0,0) is not inside P.
% theta is a scalar and Ray R is defined to be the set of points
% (t*cos(theta),t*sin(theta) where t>=0.
% Assume that R intersects at most one of P’s vertices.
% u and v are column m-vectors with the property that the R-P intersection points
% are given by (u(k),v(k)), k=1:m. (u and v can be empty)
% d is the length of that portion of R that is inside P.

Start by reviewing facts about parametric equations for rays and line segments. A ray that “leaves” the
origin making angle θ with the positive x-axis can be specified as follows:

{ (x(t), y(t)) | x(t) = cos(θ)t, y(t) = sin(θ)t), 0 ≤ t } .

Likewise, a line segment that connects the points (α1, β1) and (α2, β2) can be specified as follows:

{ (x(t), y(t)) | x(t) = α1 + (α2 − α1)t, y(t) = β1 + (β2 − β1)t, 0 ≤ t ≤ 1 } .

If we can find t1 and t2 that satisfy 0 ≤ t1 and 0 ≤ t2 ≤ 1 so that

cos(θ)t1 = α1 + (α2 − α1)t2
sin(θ)t1 = β1 + (β2 − β1)t2



then the ray and the line segment intersect. Thus, we simply solve the 2-by-2 linear system
[

cos(θ) (α1 − α2)
sin(θ) (β1 − β2)

] [
t1
t2

]
=

[
α1

β1

]

and check to see if 0 ≤ t1 and 0 ≤ t2 ≤ 1. If these conditions hold, then the ray and the line segment
intersect and the point of intersection is (cos(θ)t1, sin(θ)t1).

Returning to the ray-through polygon problem, for each polygon edge, a 2-by-2 linear system must be solved
to see if it intersects with the ray. These systems must be solved using the method of Gaussian elimination
with partial pivoting.

Regarding the computation of d, if the ray fails to intersect the polygon, then d = 0. Otherwise, let
(u1, v1), . . . , (um, vm) be the points of intersection and note that m must be even because each time the
ray “enters” the polygon it must “leave” the polygon. The output value d can be determined by summing
appropriate line segment lengths that are defined by the intersection points.

For full credit, your implementation of InsideDist must be fully vectorized and involve no loops. This
rules out using the Matlab LU function. You must write your own vectorized code that solves collections
of 2-by-2 linear systems “at the same time”. For example, if A11 is the vector of all (1,1) entries and A21 is
the vector of all (2,1) entries, then A12./A11 is the vector of 	21’s. Don’t forget that Gaussian elimination
with partial piviting is to be used. You might want to review the find function in order to implement a
vectorized row interchange step.

Submit listing and output when the test script P3 is run.

Challenge Problem 2. (Estimating σmin(A).)

Let σmin(M) denote the smallest singular value of a matrix M . Note that if My = d and d has unit 2-norm,
then

σmin(M) =
1

‖ M−1 ‖2

≤ 1
‖ y ‖2

.

Thus, if we can choose a unit 2-norm d so that My = d has a large solution, then we can estimate σmin(M)
with 1/‖ y ‖2.

Here is an idea for generating a large norm solution when M = U is upper triangular. Suppose we have
a large norm solution to U(k:n, k:n)yc = dc where yc, dc ∈ IRn−k+1 with dc having unit 2-norm. Choose
c = cos(θ) and s = sin(θ) so that the solution to

U(k − 1:n, k − 1:n)y+ =
[

c
sdc

]

is as large as possible in 2-norm. This leads to a 2-by-2 SVD problem. (You are allowed to use svd for this.)
If we optimize in this way for k = n:− 1; 1, then we obtain a “greedy” algorithm that produces a large-norm
solution to Uy = d with a unit right hand side.

Implement a function sn = SigmaMinEst(U) that incorporates this idea. Write a test script that sheds
light on the quality of the estimate σmin(A) ≈ SigmaMinEst(U) where [L,U,P] = lu(A). Your test script
should be applied to lots of random A-matrices. You can fix the value of σmin(A) by computing [U,S,V]
= svd(randn(n,n)) and setting A = US̃V T where S̃ has a specified minimum singular value. Your test
script should cover a range of σmin values and a range of n-values. The test script should also provide a
comment on the connection between σmin(A) and σmin(U). Think of the test script output as a way to
“sell” SigmaMinEst. Submit a listing of SigmaMinEst and a listing of your test script and the output it
produces. Three pages max.


