
CS 6210: Assignment 1

Due: Friday, September 3, 2010 (In Class or in Upson 5153 by 4pm)

Scoring for each problem is on a 0-to-5 scale ( 5 = complete success, 4 = overlooked a small detail, 3 = good start, 2 = right

idea, 1 = germ of the right idea, 0 = missed the point of the problem.) One point will be deducted for insufficiently commented

code. Unless otherwise stated, you are expected to utilize fully Matlab’s vectorizing capability subject to the constraint of

being flop-efficient. Test drivers and related material are posted at http://www.cs.cornell.edu/courses/cs6210/2010fa/. For

each problem submit output and a listing of all scripts/functions that you had to write in order to produce the output. You

are allowed to discuss background issues with other students, but the codes you submit must be your own.

P1. (Spotting Matrix Operations)

Assume that E, F, G, H ∈ IRn×n and that A ∈ IRn×n is defined by

aij =
n∑

k1=1

n∑
k2=1

n∑
k3=1

E(k1, i)F (k1, i)G(k2, k1)H(k2, k3)F (k2, k3)G(k3, j)

Write a function A = MatrixProdFast(E,F,G,H) that returns the matrix A defined by this expression. Make
it flop-efficient and exploit Matlab’s vectorizing capabilities. A function MatrixProdSlow that does the
same thing is on the course website together with a test script P1. Note that MatrixProdSlow requires
O(n5) flops. If you are successful, your implementation of MatrixProdFast will involve no loops and require
O(n3) flops. Submit a listing of MatrixProdFast together with the output produced when P1 is run. Hint.
Suppose W ∈ IRn×n is defined by

wij =
n∑

p=1

n∑
q=1

xipypqzqj

where X, Y, Z ∈ IRn×n. If we use this formula for each wij then it would require O(n4) flops to set up W .
On the other hand,

wij =
n∑

p=1

xip

(
n∑

q=1

ypqzqj

)
=

n∑
p=1

xipupj

where U = Y Z. Thus, W = XU = XY Z and only O(n3) flops are required. In the given problem, you will
be reasoning like that. Be on the look out for transposes and pointwise products, e.g., X. ∗ Y .

P2. (A Rank-k Correction)

If A ∈ IRn×n, u ∈ IRn, and v ∈ IRn are given and k is a positive integer, then there exist X ∈ IRn×k and
Y ∈ IRn×k such that (A + uvT )k = Ak + XY T . Complete the following function so that it performs as
specified:

function [X,Y] = CorrectionTerm(A,u,v,k)
% A is n-by-n, u and v are n-by-1, and k is a positive integer.
% X and Y are n-by-k such that (A+u*v’)^k = A^k + X*Y’.

Test your implementation with the test script P2. Submit listing and output. Hint. Begin your derivation
of an algorithm by taking a look at Ak+1 + X̃Ỹ T = (Ak + XY T )(A + uvT ).

P3. (Matrix Polynomial Times Vector)

Recall Horner’s nested multiplication scheme that is normally used for polynomial evaluation. To com-
pute p(x) = c1 + c2x + · · ·+ cdxd−1 at x = z we proceed as follows:



pval = c(d);
for k=d-1:-1:1

pval = z*pval + c(k);
end

Develop an efficient, fully vectorized saxpy implementation of the following Matlab function:

function y = Polyvec(c,A,p)
% c is a column m-vector
% A is an n-by-n matrix with lower bandwidth p, assume pm<n
% y is the first column of c(1)I + c(2)A + ... + c(m)A^{m-1}

Use the Horner idea and exploit A’s band structure. Submit listing and output when the test script P3 is
applied.

Challenge Problem 1.

Recall that if F, G ∈ IRn×k and x ∈ IRn, then the n-by-n matrix-vector product y = Ax where A = FGT

can be computed in 4nk flops since y = Ax = FGTx = F (GT x). This is an important observation if k << n
and we will refer to it as the rank-k product fact.

Assume P, Q ∈ IRn×k and that D ∈ IRn×n is diagonal. Define the matrix A = (aij) ∈ IRn×n by

aij =

⎧⎨
⎩

(PQT )ij if i < j
Dii if i = j
(QP T )ij if i > j

We say that a matrix of this form has Property S. The challenge is to write a function y = PropSprod(P,Q,d,x)
that computes the matrix-vector product y = Ax in O(nk) flops.

Suppose we partition y = Ax as follows[
y1

y2

]
=
[

A11 A12

A21 A22

] [
x1

x2

]
=
[

A11x1 + A12x2

A21x1 + A22x2

]

where both A11 ∈ IRn1×n1 and A22 ∈ IRn2×n2. Note that both A12 and A21 have the form FGT where the
two factors have k columns. Thus, the products A12x2 and A21x1 can be computed efficiently using the
rank-k product fact. The blocks A11 and A22 have Property S so the products A11x1 and A22x2 can be
computed efficiently by recursively calling PropSprod.

Implement the function y = PropSprod(P,Q,d,x) exploiting these ideas. Here, P and Q are n-by-k and
d is a column n-vector that defines the diagonal matrix D, i.e., D = diag(d1, . . . , dn).

Submit listing and the output when the test script C1 is applied. Include comments on the number of
flops that are approximately required when PropSprod is called. Also comment on the rationale behind your
definition of the base case. (You probably do not want to recur all the way down to n = 1.) Your Challenge
Problem submission must not be more than two pages total.

For hints on how to organize a recursive matrix product, check out the discussion of the Strassen algorithm
in §1.3 of GVL.


