CS 6156

LTL Monitor Synthesis

Owolabi Legunsen

Fall 2020

In this lecture...

LTL syntax and semantics

Intro to BDDs

• "Special" FSMs that LTL specs get translated to

Algorithms for translating LTL to FSMs

Next lecture?

- Asynchronous Maude "interpreter" monitoring algorithm
- Synthesis of dynamic-algorithm monitors for LTL
- A more efficient "online" monitoring algorithm in Maude

LTL Syntax

$$\varphi \coloneqq p \mid (\varphi) \mid \neg \varphi \mid \varphi \land \varphi' \mid \varphi \lor \varphi' \mid \circ \varphi \mid \varphi \mathcal{U} \varphi' \mid \Box \varphi \mid \Diamond \varphi$$

- p a proposition over state (event) variables
- ∘φ "next"
- $\varphi \mathcal{U} \varphi'$ "until"
- $\Box \phi$ "always", "forever", "box"
- ϕ "eventually", "sometime", "diamond"

LTL standard model

 $t: \mathbb{N}^+ \to 2^{\mathcal{P}}$ for some set of atomic propositions \mathcal{P}

 t maps each time point to the set of propositions that hold at that point

LTL Semantics (informally)

Finite trace future time LTL semantics

 In RV, we only have finite traces. So we need a different LTL semantics over finite traces

- Finite trace t: a non-empty finite sequence of states, each state denoting the set of propositions that hold at that state
 - State == Event?

Finite trace future time LTL prelims

- head (e, t) = head (e) = e
- tail(e, t) = t
- length(e) = 1
- length(e, t) = 1 + length(t)
- t_i : suffix of trace t that starts at position i

Finite trace future time LTL (1)

 $t \models f$ when a trace t satisfies a formula f, defined as

t ⊧ true	iff	true
t ⊧ false	iff	false
<i>t</i> ⊧ p	iff	$p \in head(t)$
$t \models \phi \land \phi'$	iff	$t \models \varphi \text{ and } t \models \varphi'$
$t \models \phi ++ \phi'$	iff	$t \models \varphi \text{ xor } t \models \varphi'$
$t \models \circ \varphi$	iff	if $tail(t)$ is defined then $tail(t) \models \phi$ else $t \models \phi$
$t \models \Diamond \varphi$	iff	$(\exists i \leq length(t)) t_i \models \varphi$
$t \models \Box \varphi$	iff	$(\forall i \leq length(t)) \ t_i \models \phi$
$t \models \varphi \mathcal{U} \varphi'$	iff	$(\exists i \leq length(t)) \ (t_i \models \phi' \ and \ (\forall j < i) \ t_j \models \phi)$

Finite trace future time LTL (2)

 $t \models \circ \varphi$ iff **if** tail(t) is defined **then** $tail(t) \models \varphi$ **else** $t \models \varphi$

Case 1: tail(t) is defined

Case 2: tail(t) is not defined

Finite trace future time LTL (3)

$$t \models \Diamond \varphi \text{ iff } (\exists i \leq length(t)) t_i \models \varphi$$

Recall: t_i is the suffix of trace t that starts at position i

Finite trace future time LTL (4)

$$t \models \phi \mathcal{U} \phi' \qquad \text{iff} \quad (\exists i \leq length(t)) \ (t_i \models \phi' \text{ and } (\forall j < i) \ t_j \models \phi)$$

$$i = 6$$

$$\phi \mathcal{U} \phi' \longrightarrow \boxed{\phi} \boxed{\phi} \boxed{\phi} \boxed{\phi} \boxed{\phi} \boxed{\phi'} \boxed{}$$

Recall: t_i is the suffix of trace t that starts at position i

Binary Decision Diagrams: examples

Given $((A \land B) \lor \neg C)$, where A, B, C are propositions

What do you notice about this BDD?

Binary Decision Diagrams: examples

Given ((A \land B) $\lor \neg$ C), where A, B, C are propositions

What do you notice about this BDD?

Some things to know about BDDs

A way to represent Boolean formulas

- A formula can have many BDD representations
- Problem: find a BDD that is "most efficient"
 - The order of propositions in the BDD is important
- Procedures exist for
 - creating a BDD from a formula
 - creating a Reduced-order BDD from a BDD

Our LTL monitor-synthesis goal

• Synthesize an FSM that receives an event θ and transitions as fast as possible to a new state

- We will explore two such FSMs
 - Multi-transition FSMs
 - Binary-transition tree FSMs
- What is a multi-transition?
- What is binary-transition tree?

Multi-transitions

- Let S be a set of states s.t. $\{s_1, s_2, ..., s_n\} \in S$
- Let A be a set of atomic predicates s.t.
 - p₁, p₂, ..., p_n are propositions over atoms in A
 - p₁ V p₂ V ... V p_n holds
 - for any distinct p_i and p_j , $p_i \rightarrow \neg p_j$
- Then, [p₁? s₁, p₂? s₂, ..., p_n? s_n] is a multi-transition (MT) over S and A
- MT(S, A) is the set of MTs over S and A

Multi transitions on events

- Let θ be an event
- Then θ_{MT} is a function that maps MTs to states after θ is received

$$\theta_{MT}([p_1? s_1, p_2? s_2, ..., p_n? s_n]) = s_i \text{ if } \theta(p_i) = true$$

Binary Transition Trees (BTTs)

- Syntax
 - BTT := S | (A ? BTT: BTT)
- Let BTT(S, A) be the set of BTTs over S and A
- Then θ_{BTT} is a function that maps BTTs to states after event θ is received

```
\theta_{BTT}(s) = s \text{ for any } s \in S,

\theta_{BTT}(a ? b_1 : b_2) = \theta_{BTT}(b_1) \text{ if } \theta(a) \text{ is } true, \text{ and }

\theta_{BTT}(a ? b_1 : b_2) = \theta_{BTT}(b_2) \text{ if } \theta(a) \text{ is } false
```

Relating MTs and BTTs

A BTT b in BTT(S, A) implements a MT t in MT(S, A) iff $\theta_{BTT}(b) = \theta_{MT}(t)$ for any event θ

BTT Example

 a_1 ? a_2 ? s_1 : a_3 ? violation: s_2 : a_3 ? s_2 : validation

BTTs as generalizations of BDDs?

Recall: our goal

• Synthesize an FSM that receives an event θ and transitions as fast as possible to a new state

- We will explore two such FSMs
 - Multi-transition FSMs
 - Binary-transition tree FSMs
- What is a multi-transition:
- What is binary-transition tree?

MT-FSM

- An MT-FSM is a triple (S, A, μ), where S is a set of states, A is a set of atomic predicates, and μ is a map from S {violation, validation} to MT(S, A).
 - In a terminating MT-FSM*, μ * maps to MT({violation, validation}, A).
- If we reach {violation, validation}, stay there
- On event θ , transition $s \stackrel{\theta}{\to} s'$ denotes $\theta_{MT}(\mu(s)) = s'$

MT-FSM by example

State	MT for non-terminal events	MT for terminal events	
1	[yellow \/ !green ? 1, !yellow /\ green /\ !red ? 2, !yellow /\ green /\ red ? false]	[yellow \/ !green ? true, !yellow /\ green ? false]	
2	[yellow ? 1, !yellow /\ !red ? 2, !yellow /\ red ? false]	[yellow ? true, !yellow ? false]	

Figure 3: MT-FSM for the formula [] (green -> !red U yellow).

BTT-FSM

- A BTT-FSM is a triple (S, A, β), where S is a set of states, A is a set of atomic predicates, and β is a map from S {violation, validation} to BTT(S, A).
 - In a terminating BTT-FSM*, β* maps to BTT({violation, validation}, A).
- If we reach {violation, validation}, stay there
- On event θ , transition $s \stackrel{\theta}{\rightarrow} s'$ denotes $\theta_{BTT}(\beta(s)) = s'$

BTT-FSM by example

Figure 4: A BTT-FSM for the formula [] (green -> !red U yellow).

BTT-FSMs are efficient MT-FSMs

- One way to think about it informally
 - BTT-FSMs are to MT-FSMs what RoBDDs are to BDDs
- Another way to think about it informally
 - MT-FSMs: many if-then statements, all conditions evaluated
 - BTT-FSMs: if-then-else sequence, only some conditions usually need to be evaluated
- LTL synthesis: LTL spec → MT-FSM → BTT-FSM

Why not LTL → BTT-FSMs?

 Short answer: state mergeability is well defined and allows for more elegant LTL

MT-FSM conversion

```
MERGE([p_1?s_1, p_2?s_2, ..., p_n?s_n], [p'_1?s'_1, p'_2?s'_2, ..., p'_n?s'_{n'}]) contains all choices p?s'', where s'' is a state in \{s_1, s_2, ..., s_n\} \cup \{s'_1, s'_2, ..., s'_{n'}\} and
```

- p is p_i when $s'' = s_i$ for some $1 \le i \le n$ and $s'' \ne s'_{i'}$ for all $1 \le i' \le n'$, or
- p is $p'_{i'}$ when $s'' = s'_{i'}$ for some $1 \le i' \le n'$ and $s'' \ne s_i$ for all $1 \le i \le n$, or
- p is $p_i \vee p'_{i'}$ when $s'' = s_i$ for some $1 \leq i \leq n$ and $s'' = s'_{i'}$ for some $1 \leq i' \leq n'$.
- MERGE is used in the LTL2MT-FSM algorithm
- Is this elegance at the cost of efficiency?

MT-FSM → BTT-FSM conversion

Recall: many BDDs can represent the same formula

Similarly, many BTTs can represent the same MT

- How do we find optimal BTT for an MT?
 - Enumerate BTT all and pick the most efficient
- Is it time to revisit the optimal BTT problem (probabilities, cost, new algorithm)?

LTL spec -> MT-FSM preliminaries

State	MT for non-terminal events	MT for terminal events	
1	[yellow \/ !green ? 1, !yellow /\ green /\ !red ? 2, !yellow /\ green /\ red ? false]	[yellow \/ !green ? true, !yellow /\ green ? false]	
2	[yellow ? 1, !yellow /\ !red ? 2, !yellow /\ red ? false]	[yellow ? true, !yellow ? false]	

MT-FSM states are formulas

 ϕ contains all event names

Key idea: After event θ occurs, what formulas can ϕ be re-written to?

Terminal states: what if θ is the last event in the trace?

Formula rewriting basics

- Intuition:
 - Let trace t = E, T consist of event E followed by trace T
 - Formula X holds on t iff X{E} holds on T
 - If E is terminal, then X{E*} holds iff X holds in standard LTL semantics

```
• Rewrite rules: eq (o X){E} = X . eq (o X){E *} = X{E *} . eq (o X){E} = X{E} \/ <> X . eq (<> X){E} = X{E} \/ <> X . eq (<> X){E} = X{E} \/ <> X . eq (<> X){E *} = X{E *} . eq ([] X){E} = X{E} /\ [] X . eq ([] X){E} *] = X{E} /\ [] X . eq ([] X){E *} = X{E *} . eq (X U Y){E} = Y{E} \/ X{E} /\ X U Y . eq (X U Y){E *} = Y{E *} . op _|-_ : Trace Formula -> Bool . eq E |- X = [X{E *}] . eq E, T |- X = T |- X{E} .
```

Formula rewriting example (1)

- Let $X = \Box$ (green $\rightarrow \neg \text{red } \mathcal{U}$ yellow), E = green yellow
- X =*=> \square (true ++ green ++ green \wedge (true ++ red) \mathcal{U} yellow)

```
([](true ++ green ++ green /\ (true ++ red) U yellow)){green yellow} =*=>
(true ++ green{green yellow}
    ++ green{green yellow} /\ ((true ++ red) U yellow){green yellow})
        /\ [](true ++ green ++ green /\ (true ++ red) U yellow) =*=>
((true ++ red) U yellow){green yellow})
        /\ [](true ++ green ++ green /\ (true ++ red) U yellow) =*=>
(yellow{green yellow} \/ ((true ++ red{green yellow}) /\ (true ++ red) U yellow)
        /\ [](true ++ green ++ green /\ (true ++ red) U yellow)
```

Formula rewriting example (2)

- Let $X = \Box$ (green $\rightarrow \neg \text{red } \mathcal{U}$ yellow), E = green
- X =*=> \Box (true ++ green ++ green \land (true ++ red) \mathcal{U} yellow)

Rewriting takes many steps! Sections 4.2 and 6.1 have details

Theorem 2: rewriting terminates (among other things)

LTL2MT-FSM algorithm (1)

```
1. let S be \varphi
  2. procedure LTL2MT-FSM(\varphi)
   3. let \mu^*(\varphi) be \emptyset
  4. let \mu(\varphi) be \emptyset
 5. foreach \theta: A \to \{true, false\} do
6. let e_{\theta} be the list of atoms a with \theta(a) = true
7. let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
8. let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
9. let \varphi_{\theta} be \varphi\{e_{\theta}\}
10. if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
11. then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
12. else let S be S \cup \{\varphi_{\theta}\}
                           let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
13.
14.
                           LTL2MT-FSM(\varphi_{\theta})
15.
             endfor
             if \mu(\varphi) = [true? \varphi] and \mu^*(\varphi) = [true? b] then replace \varphi by b everywhere
17. endprocedure
```

Figure 5: Algorithm to generate a minimal MT-FSM* $(S, A, \mu, \mu^*, \varphi)$ from an LTL formula φ .

LTL2MT-FSM algorithm (2)

```
1 let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^{\star}(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
             let e_{\theta} be the list of atoms a with \theta(a) = true
 6.
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
 7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
 8.
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
10.
             then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
11.
             else let S be S \cup \{\varphi_{\theta}\}
12.
13.
                     let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
          if \mu(\varphi) = [true? \varphi] and \mu^*(\varphi) = [true? b] then replace \varphi by b everywhere
16.
17. endprocedure
```

S is the set of states (initialized to $\{\phi\}$)

LTL2MT-FSM algorithm (3)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^*(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
 4.
          foreach \theta: A \to \{true, false\} do
 5.
 6.
             let e_{\theta} be the list of atoms a with \theta(a) = true
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
 7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
10.
             then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
11.
12.
             else let S be S \cup \{\varphi_{\theta}\}
13.
                     let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
16.
         if \mu(\varphi) = [true ? \varphi] and \mu^*(\varphi) = [true ? b] then replace \varphi by b everywhere
17. endprocedure
```

For each state formula ϕ in S, maintain terminal $(\mu^*(\phi))$ and nonterminal $(\mu(\phi))$ states

LTL2MT-FSM algorithm (4)

```
1. let S be \varphi
  2. procedure LTL2MT-FSM(\varphi)
          let \mu^{\star}(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
  5.
  6.
              let e_{\theta} be the list of atoms a with \theta(a) = true
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
  7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
  8.
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
  9.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
10.
             then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
11.
              else let S be S \cup \{\varphi_{\theta}\}
12.
13.
                      let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
          if \mu(\varphi) = [true? \varphi] and \mu^{\star}(\varphi) = [true? b] then replace \varphi by b everywhere
16.
17. endprocedure
```

Update $\mu^*(\phi)$ by considering θ to be the last event

LTL2MT-FSM algorithm (5)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^{\star}(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
 6.
             let e_{\theta} be the list of atoms a with \theta(a) = true
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
 7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
 8.
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
10.
             then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
11.
             else let S be S \cup \{\varphi_{\theta}\}
12.
13.
                     let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
          if \mu(\varphi) = [true? \varphi] and \mu^*(\varphi) = [true? b] then replace \varphi by b everywhere
16.
17. endprocedure
```

Rewrite φ to $\varphi\{\theta\}$

LTL2MT-FSM algorithm (6)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^{\star}(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
 6.
              let e_{\theta} be the list of atoms a with \theta(a) = true
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
  7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
10.
             then let \mu(\varphi) be MERGE([p_\theta ? \varphi'], \mu(\varphi))
11.
12.
              else let S be S \cup \{\varphi_{\theta}\}
13.
                     let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
          if \mu(\varphi) = [true ? \varphi] and \mu^*(\varphi) = [true ? b] then replace \varphi by b everywhere
16.
17. endprocedure
```

Did we see $\varphi' = \varphi\{\theta\}$?

LTL2MT-FSM algorithm (7)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^*(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
 6.
             let e_{\theta} be the list of atoms a with \theta(a) = true
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
 7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
10.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
             then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
11.
12.
             else let S be S \cup \{\varphi_{\theta}\}
13.
                     let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
         if \mu(\varphi) = [true? \varphi] and \mu^*(\varphi) = [true? b] then replace \varphi by b everywhere
16.
17. endprocedure
```

Yes: modify the transition set of ϕ to point to ϕ'

LTL2MT-FSM algorithm (8)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
         let \mu^*(\varphi) be \emptyset
         let \mu(\varphi) be \emptyset
         foreach \theta: A \to \{true, false\} do
 6.
            let e_{\theta} be the list of atoms a with \theta(a) = true
           let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
 7.
           let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
           let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
           if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
                                                                                   No:
10.
11.
            then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
                                                                                   1.Add \varphi' to S,
12.
            else let S be S \cup \{\varphi_{\theta}\}
13.
                  let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
                                                                                   2.add a non-terminal state to \mu(\varphi),
14.
                  LTL2MT-FSM(\varphi_{\theta})
15.
         endfor
                                                                                   3.what formulas can \varphi'(\theta) rewrite to?
16.
        if \mu(\varphi) = [true? \varphi] and \mu^*(\varphi) = [true? b] then repl
17. endprocedure
```

LTL2MT-FSM algorithm (9)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^*(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
             let e_{\theta} be the list of atoms a with \theta(a) = true
 6.
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
  7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
10.
             then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
11.
12.
             else let S be S \cup \{\varphi_{\theta}\}
13.
                     let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
         if \mu(\varphi) = [true ? \varphi] and \mu^*(\varphi) = [true ? b] then replace \varphi by b everywhere
16.
17. endprocedure
```

Optimization???

LTL2MT-FSM algorithm (10)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^*(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
 6.
             let e_{\theta} be the list of atoms a with \theta(a) = true
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
             let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
10.
             if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
             then let \mu(\varphi) be MERGE([p_{\theta} ? \varphi'], \mu(\varphi))
11.
12.
             else let S be S \cup \{\varphi_{\theta}\}
13.
                     let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                     LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
         if \mu(\varphi) = [true ? \varphi] and \mu^*(\varphi) = [true ? b] then replace \varphi by b everywhere
16.
17. endprocedure
```

By now, we generated all possible LTL formulas to which ϕ can ever evolve (modulo finite state semantics)

By (the almighty) theorem 2, this will terminate

LTL2MT-FSM algorithm (6, again)

```
1. let S be \varphi
 2. procedure LTL2MT-FSM(\varphi)
          let \mu^*(\varphi) be \emptyset
          let \mu(\varphi) be \emptyset
          foreach \theta: A \to \{true, false\} do
 6.
             let e_{\theta} be the list of atoms a with \theta(a) = true
             let p_{\theta} be the proposition \bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}
  7.
             let \mu^{\star}(\varphi) be MERGE([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))
            let \varphi_{\theta} be \varphi\{e_{\theta}\}
 9.
            if there is \varphi' \in S with VALID(\varphi_{\theta} \leftrightarrow \varphi')
                                                                                                                        Homework: what is valid?
10.
            then let \mu(\varphi) be MERGE([p_\theta ? \varphi'], \mu(\varphi))
11.
12.
             else let S be S \cup \{\varphi_{\theta}\}
13.
                    let \mu(\varphi) be MERGE([p_{\theta} ? \varphi_{\theta}], \mu(\varphi))
14.
                    LTL2MT-FSM(\varphi_{\theta})
15.
          endfor
16.
         if \mu(\varphi) = [true? \varphi] and \mu^*(\varphi) = [true? b] then replace \varphi by b everywhere
17. endprocedure
```

What we saw in this lecture...

LTL syntax and semantics

Intro to BDDs

"Special" FSMs that LTL specs get translated to

Algorithms for translating LTL to FSMs