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In this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs
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Next lecture?
• Asynchronous Maude “interpreter” monitoring algorithm

• Synthesis of dynamic-algorithm monitors for LTL

• A more efficient “online” monitoring algorithm in Maude
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LTL Syntax
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• – a proposition over state (event) variables
• – “next”
• – “until”
• – “always”, “forever”, “box”
• – “eventually”, “sometime”, “diamond”



LTL standard model

: for some set of atomic propositions 

• maps each time point to the set of propositions 
that hold at that point
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LTL Semantics (informally)
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Finite trace future time LTL semantics

• In RV, we only have finite traces. So we need a 
different LTL semantics over finite traces

• Finite trace : a non-empty finite sequence of 
states, each state denoting the set of propositions 
that hold at that state

• State == Event?
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Finite trace future time LTL prelims
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Finite trace future time LTL (1)
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iff false
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when a trace satisfies a formula f, defined as



Finite trace future time LTL (2)
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( )

( )

iff if ( ) is defined then ( ) 

Case 1: ( ) is defined  

Case 2: ( ) is not defined  



Finite trace future time LTL (3)

13

= 8

iff



Finite trace future time LTL (4)
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Binary Decision Diagrams: examples
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Binary Decision Diagrams: examples
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Some things to know about BDDs
• A way to represent Boolean formulas

• A formula can have many BDD representations

• Problem: find a BDD that is “most efficient”
• The order of propositions in the BDD is important

• Procedures exist for
• creating a BDD from a formula
• creating a Reduced-order BDD from a BDD
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Our LTL monitor-synthesis goal

• Synthesize an FSM that receives an event and 
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition? 

• What is binary-transition tree?
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Multi-transitions
• Let S be a set of states s.t. {s1, s2, …, sn} 

• Let A be a set of atomic predicates s.t.
• p1, p2, …, pn are propositions over atoms in A

• p1 p2 … pn holds

• for any distinct pi and pj, pi

• Then, [p1? s1, p2 ? s2, …, pn ? sn] is a multi-transition 
(MT) over S and A

• MT(S, A) is the set of MTs over S and A
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Multi transitions on events

• Let be an event
• Then is a function that maps MTs to states after 

is received 

20

([p1? s1, p2 ? s2, …, pn ? sn]) = si if (pi) = true



Binary Transition Trees (BTTs)

• Syntax
• S | (A ? BTT: BTT)

• Let BTT(S, A) be the set of BTTs over S and A
• Then is a function that maps BTTs to states 

after event is received 
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θBTT(s)  = s for any s S,
θBTT(a ? b1 : b2)  = θBTT(b1) if θ(a) is true, and
θBTT(a ? b1 : b2) = θBTT(b2) if θ(a) is false



Relating MTs and BTTs

A BTT b in BTT(S, A) implements a MT t in MT(S, A) iff
θBTT(b) = θMT(t) for any event θ
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BTT Example

a1 ? a2 ? s1 : a3 ? violation : s2 : a3 ? s2 : validation
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BTTs as generalizations of BDDs? 



Recall: our goal

• Synthesize an FSM that receives an event and 
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition? 

• What is binary-transition tree?
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MT-FSM

• An MT-FSM is a triple (S, A, µ), where S is a set of 
states, A is a set of atomic predicates, and µ is a 
map from S − {violaƟon, validaƟon} to MT(S, A).

• In a terminating MT-FSM*, µ* maps to MT({violation, 
validation} , A). 

• If we reach {violation, validation}, stay there

• On event transition s s’ denotes (µ(s)) = s’
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θ



MT-FSM by example
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BTT-FSM

• A BTT-FSM is a triple (S, A, β), where S is a set of 
states, A is a set of atomic predicates, and β is a 
map from S − {violaƟon, validaƟon} to BTT(S, A).

• In a terminating BTT-FSM*, β* maps to BTT({violation, 
validation} , A). 

• If we reach {violation, validation}, stay there

• On event transition s s’ denotes (β(s)) = s’
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BTT-FSM by example
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BTT-FSMs are efficient MT-FSMs

• One  way to think about it informally
• BTT-FSMs are to MT-FSMs what RoBDDs are to BDDs

• Another way to think about it informally
• MT-FSMs: many if-then statements, all conditions evaluated
• BTT-FSMs: if-then-else sequence, only some conditions 

usually need to be evaluated

• LTL synthesis: LTL spec MT-FSM  BTT-FSM
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Why not LTL  BTT-FSMs?

• Short answer: state mergeability is well defined and 
allows for more elegant LTL MT-FSM conversion
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• MERGE is used in the LTL2MT-FSM algorithm
• Is this elegance at the cost of efficiency? 



MT-FSM  BTT-FSM conversion

• Recall: many BDDs can represent the same formula

• Similarly, many BTTs can represent the same MT

• How do we find optimal BTT for an MT?
• Enumerate BTT all and pick the most efficient

• Is it time to revisit the optimal BTT problem 
(probabilities, cost, new algorithm)?
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(green → ¬red yellow)

LTL spec MT-FSM preliminaries
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LTL2MT-
FSM

MT-FSM

MT-FSM states are formulas

contains all event names

Key idea: After event θ occurs, what formulas can be re-written to?

Terminal states: what if θ is the last event in the trace?



Formula rewriting basics
• Intuition: 

• Let trace E, T consist of event E followed by trace T
• Formula X holds on iff X{E} holds on T
• If E is terminal, then X{E*} holds iff X holds in standard 

LTL semantics

• Rewrite rules:
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X must hold now (X{E}) 
and in the future ( X)



Formula rewriting example (1)
• Let X = □(green → ¬red yellow), E = green yellow
• X =*=> □(true ++ green ++ green (true ++ red) yellow) 
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Formula rewriting example (2)
• Let X = □(green → ¬red yellow), E = green
• X =*=> □(true ++ green ++ green (true ++ red) yellow) 
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Rewriting takes many steps! Sections 4.2 and 6.1 have details

Theorem 2: rewriting terminates (among other things)



LTL2MT-FSM algorithm (1)
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LTL2MT-FSM algorithm (2)
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S is the set of states 
(initialized to { })



LTL2MT-FSM algorithm (3)
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For each state formula 
in S, maintain terminal 
(µ*( and non-
terminal (µ( states



LTL2MT-FSM algorithm (4)
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Update µ*( by 
considering to be 
the last event 



LTL2MT-FSM algorithm (5)
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Rewrite 



LTL2MT-FSM algorithm (6)
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Did we see ?



LTL2MT-FSM algorithm (7)
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Yes: modify the 
transition set of to 
point to 



LTL2MT-FSM algorithm (8)
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No: 
1.Add
2.add a non-terminal state to µ(
3.what formulas can rewrite to?



LTL2MT-FSM algorithm (9)
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Optimization??? 



LTL2MT-FSM algorithm (10)
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By now, we generated 
all possible LTL formulas 
to which can ever 
evolve (modulo finite 
state semantics)

By (the almighty) theorem 
2, this will terminate



LTL2MT-FSM algorithm (6, again)
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Homework: what is valid?



What we saw in this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs
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