
CS 6156

LTL Monitor Synthesis

Owolabi Legunsen

Fall 2020

1

In this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs

4

Next lecture?
• Asynchronous Maude “interpreter” monitoring algorithm

• Synthesis of dynamic-algorithm monitors for LTL

• A more efficient “online” monitoring algorithm in Maude

5

LTL Syntax

6

• – a proposition over state (event) variables
• – “next”
• – “until”
• – “always”, “forever”, “box”
• – “eventually”, “sometime”, “diamond”

LTL standard model

: for some set of atomic propositions

• maps each time point to the set of propositions
that hold at that point

7

LTL Semantics (informally)

8

Finite trace future time LTL semantics

• In RV, we only have finite traces. So we need a
different LTL semantics over finite traces

• Finite trace : a non-empty finite sequence of
states, each state denoting the set of propositions
that hold at that state

• State == Event?

9

Finite trace future time LTL prelims

10

•

•

•

•

•

Finite trace future time LTL (1)

11

iff true
iff false
iff
iff and
iff xor
iff if () is defined then ()
iff
iff
iff j)

when a trace satisfies a formula f, defined as

Finite trace future time LTL (2)

12

()

()

iff if () is defined then ()

Case 1: () is defined

Case 2: () is not defined

Finite trace future time LTL (3)

13

= 8

iff

Finite trace future time LTL (4)

14

= 6

iff j)

Binary Decision Diagrams: examples

15

A

C B

Ctrue false true

false true

false

false

false

false

true

true

true

true

What do you notice about this BDD?

Binary Decision Diagrams: examples

16

A

C B

Ctrue false true

false true

false

false

false

false

true

true

true

true

C

B

A

true

false

false true

false

false

false

true

true

true

What do you notice about this BDD?

Some things to know about BDDs
• A way to represent Boolean formulas

• A formula can have many BDD representations

• Problem: find a BDD that is “most efficient”
• The order of propositions in the BDD is important

• Procedures exist for
• creating a BDD from a formula
• creating a Reduced-order BDD from a BDD

17

Our LTL monitor-synthesis goal

• Synthesize an FSM that receives an event and
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition?

• What is binary-transition tree?

18

Multi-transitions
• Let S be a set of states s.t. {s1, s2, …, sn}

• Let A be a set of atomic predicates s.t.
• p1, p2, …, pn are propositions over atoms in A

• p1 p2 … pn holds

• for any distinct pi and pj, pi

• Then, [p1? s1, p2 ? s2, …, pn ? sn] is a multi-transition
(MT) over S and A

• MT(S, A) is the set of MTs over S and A

19

Multi transitions on events

• Let be an event
• Then is a function that maps MTs to states after

is received

20

([p1? s1, p2 ? s2, …, pn ? sn]) = si if (pi) = true

Binary Transition Trees (BTTs)

• Syntax
• S | (A ? BTT: BTT)

• Let BTT(S, A) be the set of BTTs over S and A
• Then is a function that maps BTTs to states

after event is received

21

θBTT(s) = s for any s S,
θBTT(a ? b1 : b2) = θBTT(b1) if θ(a) is true, and
θBTT(a ? b1 : b2) = θBTT(b2) if θ(a) is false

Relating MTs and BTTs

A BTT b in BTT(S, A) implements a MT t in MT(S, A) iff
θBTT(b) = θMT(t) for any event θ

22

BTT Example

a1 ? a2 ? s1 : a3 ? violation : s2 : a3 ? s2 : validation

23

a1

a2 a3

s2s1 a3 validation

violation s2

true

true

true

true

false

false

false

false

A

C B

Ctrue false true

false true

false

false

false

false

true

true

true

true

BTTs as generalizations of BDDs?

Recall: our goal

• Synthesize an FSM that receives an event and
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition?

• What is binary-transition tree?

24

MT-FSM

• An MT-FSM is a triple (S, A, µ), where S is a set of
states, A is a set of atomic predicates, and µ is a
map from S − {violaƟon, validaƟon} to MT(S, A).

• In a terminating MT-FSM*, µ* maps to MT({violation,
validation} , A).

• If we reach {violation, validation}, stay there

• On event transition s s’ denotes (µ(s)) = s’

25

θ

MT-FSM by example

26

BTT-FSM

• A BTT-FSM is a triple (S, A, β), where S is a set of
states, A is a set of atomic predicates, and β is a
map from S − {violaƟon, validaƟon} to BTT(S, A).

• In a terminating BTT-FSM*, β* maps to BTT({violation,
validation} , A).

• If we reach {violation, validation}, stay there

• On event transition s s’ denotes (β(s)) = s’

27

θ

BTT-FSM by example

28

BTT-FSMs are efficient MT-FSMs

• One way to think about it informally
• BTT-FSMs are to MT-FSMs what RoBDDs are to BDDs

• Another way to think about it informally
• MT-FSMs: many if-then statements, all conditions evaluated
• BTT-FSMs: if-then-else sequence, only some conditions

usually need to be evaluated

• LTL synthesis: LTL spec MT-FSM  BTT-FSM

29

Why not LTL  BTT-FSMs?

• Short answer: state mergeability is well defined and
allows for more elegant LTL MT-FSM conversion

30

• MERGE is used in the LTL2MT-FSM algorithm
• Is this elegance at the cost of efficiency?

MT-FSM  BTT-FSM conversion

• Recall: many BDDs can represent the same formula

• Similarly, many BTTs can represent the same MT

• How do we find optimal BTT for an MT?
• Enumerate BTT all and pick the most efficient

• Is it time to revisit the optimal BTT problem
(probabilities, cost, new algorithm)?

31

(green → ¬red yellow)

LTL spec MT-FSM preliminaries

33

LTL2MT-
FSM

MT-FSM

MT-FSM states are formulas

contains all event names

Key idea: After event θ occurs, what formulas can be re-written to?

Terminal states: what if θ is the last event in the trace?

Formula rewriting basics
• Intuition:

• Let trace E, T consist of event E followed by trace T
• Formula X holds on iff X{E} holds on T
• If E is terminal, then X{E*} holds iff X holds in standard

LTL semantics

• Rewrite rules:

34

X must hold now (X{E})
and in the future (X)

Formula rewriting example (1)
• Let X = □(green → ¬red yellow), E = green yellow
• X =*=> □(true ++ green ++ green (true ++ red) yellow)

35

Formula rewriting example (2)
• Let X = □(green → ¬red yellow), E = green
• X =*=> □(true ++ green ++ green (true ++ red) yellow)

36

Rewriting takes many steps! Sections 4.2 and 6.1 have details

Theorem 2: rewriting terminates (among other things)

LTL2MT-FSM algorithm (1)

37

LTL2MT-FSM algorithm (2)

38

S is the set of states
(initialized to { })

LTL2MT-FSM algorithm (3)

39

For each state formula
in S, maintain terminal
(µ*(and non-
terminal (µ(states

LTL2MT-FSM algorithm (4)

40

Update µ*(by
considering to be
the last event

LTL2MT-FSM algorithm (5)

41

Rewrite

LTL2MT-FSM algorithm (6)

42

Did we see ?

LTL2MT-FSM algorithm (7)

43

Yes: modify the
transition set of to
point to

LTL2MT-FSM algorithm (8)

44

No:
1.Add
2.add a non-terminal state to µ(
3.what formulas can rewrite to?

LTL2MT-FSM algorithm (9)

45

Optimization???

LTL2MT-FSM algorithm (10)

46

By now, we generated
all possible LTL formulas
to which can ever
evolve (modulo finite
state semantics)

By (the almighty) theorem
2, this will terminate

LTL2MT-FSM algorithm (6, again)

47

Homework: what is valid?

What we saw in this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs

48

