
CS 6156
Program Instrumentation

with AspectJ

Owolabi Legunsen

Fall 2020

1Slides based in part on lectures by Klaus Havelund

Some logistics

• HW0 is due today (9/15) 11.59 AoE

• Readings for future classes and suggested leads
have been released

• Any questions, comments, or complaints?

• You should start thinking actively about projects
• We’ll discuss more in class on 9/17

2

What is instrumentation?

• “By program instrumentation here we mean the
process of inserting additional statements into a
program for information gathering purposes.”1

• “Program instrumentation is a way of learning
about the effect individual tests have on a
program.”2

3
1J.C. Huang, Detection of Data Flow Anomaly Through Program Instrumentation, TSE 1979
2E. F. Miller, Program Testing, IEEE Computer 1978

Instrumentation in practice

• How do debuggers know what code to step through?

• How does your code coverage tool know what
statements, blocks, methods, etc., are covered?

• Did you ever write “printf” statements to know what
(parts of) your code does?

4

Recall: what you’ll learn in CS 6156

Code

Instrument Instrumented
Code

Execute

Monitors

Events

Violations

Specs

• How to instrument code to obtain runtime events?

• Compile-time vs. runtime instrumentation

• Problems and challenges of instrumentation

5

Some instrumentation frameworks

• ASM

• Javassist

• BCEL

• AspecJ, AspectC, AspectWerkz, etc.

• JVMTI

• JMX

• Spring AOP

• …

6

Why AspectJ?

• RV requires instrumentation and specification

• AspectJ can provide both elements3

• AspectJ is probably the most popular aspect-
oriented programming (AOP) framework

3Bodden et al., Collaborative Runtime Verification with Tracematches, RV 2007

JavaMOP syntax extends AspectJ

8

http://fsl.cs.illinois.edu/index.php/JavaMOP_Syntax

AspectJ implements AOP

• AOP modularizes programs differently than OOP

• Separates out cross-cutting concerns: code for one
aspect of the program is collected in one place

• We will not delve into AOP as a paradigm
• But we briefly explain the more general purpose of AOP

• Focus: enough AspectJ to understand/write JavaMOP specs

Good modularity

• XML parsing in org.apache.tomcat circa 2009(?)
• red shows relevant lines of code

• nicely fits in one box (object)

XML parsing

Bad modularity

• Where is logging in org.apache.tomcat?
• red shows lines of code that handle logging
• not in just one place
• not even in a small number of places

logging

Two problems AOP tries to solve

code tangling:
one module
many concerns

code scattering:
one concern
many modules

example:
logging

Discuss: what are the effects of
tangling and scattering?

13

The effects of the two problems

• Core logic becomes harder to comprehend when it
is tangled with other code

• Scattering similar logic in the code base results in
• lots of typing, difficult to change code

• missing the big picture (in one place)

• increased probability of consistency errors

How AOP solves the two problems

code tangling:
one module
many concerns

code scattering:
one concern
many modules

aspect

example:
logging

Cross-cutting concerns are common

• logging (tracking program behavior)

• verification (checking program behavior)

• policy enforcement (correcting behavior)

• security management (preventing attacks)

• profiling (exploring where programs spend time)

• memory management

• visualization of program executions

• …

A very simplified view of AOP

while(more())
{
…
send(msg);
…

}

program

when send(msg)
{
check(msg);

}

aspect

informal
notation

weaver

while(more())
{
…
check(msg);
send(msg);
…

}

instrumented program

That’s it

except for
notation,
all the
details,
usage,
…

Basic mechanisms

• Join points
• points in a Java program

• Three main additions to Java
• Pointcut: picks out join points and values at those

points (primitive and user-defined pointcuts)

• Advice: additional action to take at join points matching
a pointcut

• Aspect: a modular unit of crosscutting behavior
(normal Java declarations, pointcut definitions, advice)

AspectJ terminology

Joinpoint = well-defined point in the program

Pointcut = Joinpoint-set

Advice = Kind Pointcut Code
where Kind = {before, after, around}

Aspect = Advice-list

Example code
class Account {
int balance;

void deposit(int amount) {
balance = balance + amount;

}

boolean withdraw(int amount) {
if (balance - amount > 0) {
balance = balance - amount;
return true;

} else return false;
}

}

Logger class

class Logger {
private PrintStream stream;

Logger() {
… create stream

}

void log(String message) {
stream.println(message);

}
}

class Account {
int balance;
Logger logger = new Logger();

void deposit(int amount) {
logger.log("deposit amount: " + amount);
balance = balance + amount;

}

boolean withdraw(int amount) {
logger.log("withdraw amount: " + amount);
if (balance - amount >= 0) {

balance = balance – amount;
return true;

} else return false;
}

}

Logging without AOP

logging

Logging with AOP

aspect Logging {
Logger logger = new Logger();

when deposit(amount) {

logger.log("deposit amount : " + amount);
}

when withdraw(amount) {

logger.log("withdraw amount : ” + amount);
}

}

Logging code is in exactly one place

aspect Logging {
Logger logger = new Logger();

before(int amount) :
call(void Account.deposit(int)) && args(amount) {

logger.log("deposit amount : ” + amount);
}

before(int amount) :
call(boolean Account.withdraw(int)) && args(amount) {

logger.log("withdraw amount : ” + amount);
}

}

Logging in AspectJ

advice kind

advice parameter

call pointcut args pointcut

advice body

Primitive pointcuts

• A pointcut is a predicate on join points that:

• can match or not match any given join point

• can extract some values at matching join points

Example:

call(void Account.deposit(int))

matches any join point that is a call of a method with this signature

Explaining advice parameters

• Variables are bound by advice declaration

• Pointcuts supply values for variable

• Values are available in the advice body

before(int amount) :
call(void Account.deposit(int)) && args(amount) {
logger.log("deposit amount : ” + amount);

}

typed variable in place
of type name

advice parameter

• Value is ‘pulled’

• right to left across ‘:’ from pointcuts to advice

• and then to advice body

before(int amount) :
call(void Account.deposit(int)) && args(amount) {

logger.log("deposit amount : ” + amount);
}

Advice parameter data flow

Pointcut naming and patterns

aspect Balance {

pointcut accountChange(Account account) :
(call(* deposit(..)) || call(* withdraw(..)))
&& target(account);

after(Account account) : accountChange(account) {
System.out.println("balance = " + account.balance);

}

}

named pointcut

pointcut patterns

“after” advice

target pointcut

Privileged aspects

privileged aspect Balance {

pointcut accountChange(Account account) :
(call(* deposit(..)) || call(* withdraw(..)))
&& target(account);

after(Account account) : accountChange(account) {
System.out.println("balance = " + account.balance);

}
}

suppose account.balance is a
private variable. Then the aspect
must be privileged.

• Aspects that can access private fields and methods

args, this and target pointcuts

class Client {
…
void execute(…) {

…
account.deposit(500);
…

}
…

}

class Account {
…

void deposit(int amount){
…

}
…

}

Object C

before(Client client, Account account, int amount) :
call(void Account.deposit(int))
&& args(amount) && this(client) && target(account) {…}

Object A

target pointcut

target(TypeName | VariableName)

Does two things:
- predicate on join points - any join point at which target object

is an instance of TypeName or of same type as VariableName.
- exposes target if argument is a variable name

target(Account) :
- matches when target object is of type Account

target(account) :
- matches too, since account is of type Account
- in addition, it binds the target object to account

Account is a type

account is a variable

pointcut accountChange(Account account) :
(call(* deposit(..)) || call(* withdraw(..))) && target(account);

after(Account account) : accountChange(account) {
System.out.println("balance = " + account.balance);

}

Parameter data flow again

• Value is ‘pulled’

• right to left from pointcuts to user-defined pointcuts

• from pointcuts to advice

• and then to advice body

The proceed “method”

• For each around advice with the signature:

T around(T1 arg1, T2 arg2, …)

• There is a special method with the signature:

T proceed(T1, T2, …)

• Calling “proceed” means:

“run what would have been run if this around advice had
not been defined”

Reflexive information
available at all joinpoints

• thisJoinPoint
• getArgs() : Object[]
• getTarget() : Object
• getThis() : Object
• getStaticPart() : JoinPointStaticPart

• thisJoinPointStaticPart
• getKind() : String
• getSignature() : Signature
• getSourceLocation() : SourceLocation

Fun activity: implement a
code coverage tool in AspectJ

Examples of patterns

Type names:
Command
*Command
java.*.Date
Java..*
Javax..*Model+

Combined Types:
!Vector
Vector || HashTable
java.util.RandomAccess+ && java.util.List+

Method Signatures:
public void Account.set*(*)
boolean Account.withdraw(int)
bo* Po*.wi*w(i*)
!static * *.*(..)
rover..command.Command+.check(int,..)

Challenges in instrumentation

• Cost: instrumentation can slow programs down

• Heisenbugs4: slowing program execution can
introduce hard-to-debug timing-related bugs

• Can produce hard to read (binary) code

• Instrumentation tools can conflict

374Recall “Heisenberg’s” uncertainty principle in physics

Relating to Reading-3

• Can you think of properties whose specs require the
proposed features?

• What are advantages and disadvantages of
instrumenting lower-granularity program constructs?

38

Your questions from reading-3

• How are monitors "weaved into" the source code?

• What’s the difference between AOP and MOP?

• Why does instrumentation slow programs down?

• Why was basic-block based weaving not used before?

• What is sampling-based instrumentation?

39

Food for thought (take home)

Is AspectJ/AOP the best way
to instrument code for RV?

40

AspectJ Resources
• http://www.eclipse.org/aspectj

Next class…

• Discuss project ideas, timeline, meetings, teams, etc.

• Answer more questions from readings 1-4

• (Maybe) start a preface to monitor synthesis

42

Reading for next class is assigned

• Goals
• How to read software engineering papers

• See some problems RV still needs to solve to become
widely adopted

43

What we covered in this class

• Instrumentation is important in many software
engineering tasks, including RV

• We learned the basics of one instrumentation tool

• An introduction to aspect-oriented programming

• Hands-on exposure to AspectJ

44

