CS 6156
Program Instrumentation
with Aspect]

Owolabi Legunsen

Fall 2020

Slides based in part on lectures by Klaus Havelund

Some logistics

* HWO is due today (9/15) 11.59 AoE

* Readings for future classes and suggested leads
have been released

e Any questions, comments, or complaints?

* You should start thinking actively about projects
* We'll discuss more in class on 9/17

What is instrumentation?

e “By program instrumentation here we mean the
process of inserting additional statements into a
program for information gathering purposes.”?

* “Program instrumentation is a way of learning
about the effect individual tests have on a
program.”?

1J.C. Huang, Detection of Data Flow Anomaly Through Program Instrumentation, TSE 1979
2E. F. Miller, Program Testing, IEEE Computer 1978

Instrumentation in practice

* How do debuggers know what code to step through?

* How does your code coverage tool know what
statements, blocks, methods, etc., are covered?

* Did you ever write “printf” statements to know what
(parts of) your code does?

Recall: what you’ll learn in CS 6156

/ \ Instrumented

i Instrument Execute
\ / Code

Events

 How to instrument code to obtain runtime events?
* Compile-time vs. runtime instrumentation
* Problems and challenges of instrumentation

Some instrumentation frameworks

* ASM

* Javassist

* BCEL

* Aspecl), AspectC, AspectWerkz, etc.
e JVMTI

* JMX

* Spring AOP

Why Aspect)?
* RV requires instrumentation and specification

* Aspect) can provide both elements?

* Aspect] is probably the most popular aspect-
oriented programming (AOP) framework

3Bodden et al., Collaborative Runtime Verification with Tracematches, RV 2007

~ JavaMOP

// BNF below is extended with

<Specification>

<Modifier>

<Event>

<Property>
<Property Handler:>
<FEvent Definitiaon>
<Aciions

<EE;£ended Poin££;E3>

<Parameters>

<Parameter:>

<Type Pattern>

<Id>

<De :
dvice Specification>)::

<PointcUt>

<Statements>

<Boolean Expression>

http://fsl.cs.illinois.edu/index.php/JavaMOP_Syntax

syntax extends Aspect]

{p} for zero or more and [p] for zero or one repetitions of p

{<Modifier>} <Id> <Parameters> "{"
{<Declaration>}
{<Event>}

{ <Property>
{<Property Handler>}
¥
my
= "unsynchronized"” | “decentralized"” | "perthread” | "suffix”
= "event" <Id> <Event Definition> <Action>

LU

<logic Name> <logic Syntax>

" ogic State> <Action>
<ZE££§nded Dointcut£>

Specification>» ":"
- atements>] "}"
xtended Pointcut> ”&&"(ZExtended Pointcu
"thread <id> ")"
"condition (" <Boolean Expression> ")"

"(" [<Parameter> { ",
<Type Pattern> <Id>

i g

<Parameter> }

= o _Aspect] Type Pattern > -->
= <l-- Java Identifier o
= <l-- Java variable declaration -=>
= «&&=— Aspect] Pointcut -->
= <l-- Java statements -->
= <l-- Java boolean expressions -=>

Aspect) implements AOP

* AOP modularizes programs differently than OOP

e Separates out cross-cutting concerns: code for one
aspect of the program is collected in one place

* We will not delve into AOP as a paradigm
e But we briefly explain the more general purpose of AOP
* Focus: enough Aspect] to understand/write JavaMOP specs

XML parsing

XML parsing in org.apache.tomcat circa 2009(?)
* red shows relevant lines of code
* nicely fits in one box (object)

logging

Bad modularity

* Where is logging in org.apache.tomcat?
* red shows lines of code that handle logging
* notin just one place
* not even in a small number of places

Two problems AOP tries to solve

code tangling:
one module
many concerns

code scattering:
one concern

many modules
example:

logging

o

—

]
—
R

Discuss: what are the effects of

tangling and scattering? , ¢
(@%QWW@ KGN UNEG %\&QUJ&

o ds L™
) X(\FQ \WQ(HQk O%(Q 7@
N G LS

The effects of the two problems

* Core logic becomes harder to comprehend when it
is tangled with other code

* Scattering similar logic in the code base results in
* lots of typing, difficult to change code
* missing the big picture (in one place)
* increased probability of consistency errors

How AOP solves the two problems

code tangling: code scattering:
one module one concern
many concerns many modules
example:
logging

Cross-cutting concerns are commaon

* logging (tracking program behavior)

e verification (checking program behavior)
 policy enforcement (correcting behavior)

* security management (preventing attacks)

e profiling (exploring where programs spend time)
* memory management

* visualization of program executions

A very simplified view of AOP

program

aspect

while (more ())

{

send (msqg) ;

&17

weaver

when send(msg)
{

check (msqg) ;

b=

A 4

while (more ())

{

check (msqg) ;
send (msqg) ;

}

iInstrumented program

informal
notation

That’s it

except for
notation,
all the
details,
usage,

Basic mechanisms

* Join points
* points in a Java program

* Three main additions to Java

* Pointcut: picks out join points and values at those
points (primitive and user-defined pointcuts)

* Advice: additional action to take at join points matching
a pointcut

* Aspect: a modular unit of crosscutting behavior
(normal Java declarations, pointcut definitions, advice)

Aspect] terminology

Joinpoint = well-defined point in the program
Pointcut = Joinpoint-set

= Kind x Pointcut x Code
where Kind = {before, after, around}

Aspect = -list

Example code

class Account {
int balance;

void deposit(int amount) {
balance = balance + amount;

}

boolean withdraw(int amount) {
if (balance - amount > 0) {
balance = balance - amount;
return true;
} else return false;

}
}

Logger class

class Logger {
private PrintStream stream;

Logger() {
... Create stream

}

void log(String message) {
stream.println(message);

}
}

Logging without AOP

class Account { Iogglng
int balance; /
Logger logger = new Logger();

void deposit(int amount) {
logger.log("deposit amount: " + amount);
balance = balance + amount;

}

boolean withdraw(int amount) {
logger.log("withdraw amount: " + amount);
if (balance - amount >=0) {
balance = balance — amount;
return true;
} else return false;

}
}

Logging with AQOP

Ogging {
gger logger = new Logger();

Ilen de,
Iogger log("deposit amount : " + amo

when withdvaw/amount){
logger.log("withdraw amount : ” + amount);

}
}

Logging code is in exactly one place

Logging in Aspect]

aspect Logging {

Logger logger = new Lo ;
before(int amount)‘:/

advice kind

advice parameter

call(void Account.deposit(int)) && args(amount) {
logger.log("deposit amoumt=Z+ amount);
}

before(int arhount) :

call pointcut

args pointcut

call(boolean Account.withdraw(int)) && args(amount) {
logger.lgg("withdraw amount : ” + amount);

}

advice body

Primitive pointcuts

* A pointcut is a predicate on join points that:
e can match or not match any given join point
* can extract some values at matching join points

Example:

call(void Account.deposit(int))

matches any join point that is a call of a method with this signature

Explaining advice parameters

* Variables are bound by advice declaration
e Pointcuts supply values for variable

* Values are available in the advice body

typed variable in place

_ of type name
advice parameter

before(int amount) :
call(void Account.deposit(int)) && args(amount) {
logger.log("deposit amount : 7 + amount);

}

Advice parameter data flow

* Value is ‘pulled’
* right to left across “:” from pointcuts to advice
* and then to advice body

before(jint amount) :—

call(void Account.deposit{int)) && args@%um){
Iogger.log('m ” +amount);

}

Pointcut naming and patterns

named pointcut

aspect Balance {

pointcut accountChange(Account account) :

(call(* deposit(..)) | | call(*withdraw(..)))
&& target(account); pointcut patterns

after(Account account) : ntChange(account) {
System.out.printin("balance =" +32a nt.balance);

}

target pointcut

“after” advice

Privileged aspects
* Aspects that can access private fields and methods

—» privileged aspect Balance {

pointcut accountChange(Account account) :
(call(* deposit(..)) | | call(* withdraw(..)))
&& target(account);

after(Account account) : accountChange(account) {
System.out.printin("balance =" + account.balance);

}

suppose account.balance is a
private variable. Then the aspect
must be privileged.

args, this and target pointcuts

before(Client client, Account account, int amount) :
call(void Account.deposit(int))
&& args(amount) && this(client) && target(account) {...}

Object C

"

class Client {

‘\\\

volid execute (..)

Object A

/::;ss Account { ‘\\\

, void deposit (int amount) {

account.deposit (500)=

/

}

- /

target pointcut

target(TypeName | VariableName)

Does two things:
- predicate on join points - any join point at which target object
is an instance of TypeName or of same type as VariableName.
- exposes target if argument is a variable name

target(Account) : Account is a type
- matches when target object is of type Account

target(account) : _ |
- matches too, since account is of type Account account s avariable
- in addition, it binds the target object to account

Parameter data flow again

e Value is ‘pulled’
* right to left from pointcuts to user-defined pointcuts
e from pointcuts to advice
e and then to advice body

pointcut accountChange(Account account) :
(call(* deposit(..)) || call(* withdraw(..))) && target(account);

after(Account atcount) T accountChange(account) {

System.out.printIn("balance = " +account.balance);

}

The proceed “method”

* For each around advice with the signature:

T around(T1 argl, T2 arg2, ...)

* There is a special method with the signature:

T proceed(T1, T2, ...)
* Calling “proceed” means:

“run what would have been run if this around advice had
not been defined”

Reflexive information
available at all joinpoints

* thisJoinPoint Fun activity: implement a

* getArgs() : Object[] code coverage tool in Aspect)
e getTarget() : Object

e getThis() : Object
» getStaticPart() : JoinPointStaticPart

X

* thisJoinPointStaticPart
e getKind() : String
e getSignature() : Signature
» getSourcelocation() : Sourcelocation

Examples of patterns

Type names: ombined Types:

Command INector

*Command Vector | | HashTable

java.*.Date java.util.RandomAccess+ && java.util.Lis@
Java..*

\ S
Javax..*Model+ M

Method Signatures:

public void Account.set™(*)
boolean Account.withdraw(int)
bo* Po*.wi*w(i*)

Istatic * *.*(..)

rover..command.Command+.check(int,..)
— ——

Challenges in instrumentation

* Cost: instrumentation can slow programs down

* Heisenbugs*: slowing program execution can
introduce hard-to-debug timing-related bugs

e Can produce hard to read (binary) code
* Instrumentation tools can conflict

4Recall “Heisenberg’s” uncertainty principle in physics

Relating to Reading-3

e Can you think of properties whose specs require the
proposed features?

* What are advantages and disadvantages of
instrumenting lower-granularity program constructs?

Your questions from reading-3

* How are monitors "weaved into" the source code?

* What'’s the difference between AOP and MOP?
 Why does instrumentation slow programs down?

* Why was basic-block based weaving not used before?

 What is sampling-based instrumentation?

Food for thought (take home)

Is Aspect)/AOP the best way
to instrument code for RV?

AspectJ Quick Reference

Aspects at top-level (or static in types)

Aspect] Resources i

privileged aspect A { ... }
A can access private fields and methods
h . . aspect A extends B implements /, J { ... }
° ° B is a class or abstract aspect, / and J are interfaces
ttp - / /WWW' ec l] pse - O rg / aspeCt] aspect A percflow(call(void Foo.m())) { ... }
an instance of A is instantiated for every control flow through
calls to m()

The Aspect] Project

leEm

general form:
[privileged | [Modifiers] aspect Id
[extends Type | [implements TypeList | [PerClause]
{ Body }
where PerClause is one of

e | & - » @ % @ X+ 5 @ Al | % ravorites W Friends g@ Tools *
HOME | COMMUNITY | MEMBERSHIP | COMMITTERS | DOWNLOADS [EINEENEI YT
ABOUT US

-
a sp ect] crosscutting objects for better modularity

eclipse

Aspect)

aspectj is
About pect

aspectj enables

. a seamless aspect-oriented . clean modularization of
Team extension to the Java™ crosscutting concers, pertarget (Pointcut)
Plans programming language such as error checking
- Java platform compatible and handling,
Users . easy to learn and use synchronization,
context-sensitive
DL behavior, performance
Docs optimizations,

monitoring and logging,
debugging support, and
multi-object protocols

Bugs
FAQ
Mailing lists

Developers
Ccvs
Mailing list

. For Eclipse development: AJDT: The AspectJ
Development Tools

. Popular Aspect) downloads: Latest development
build | Latest stable rell | More d load
. Popular AspectJ docs: AspectJ 5 Developer's

Mabnbhaal | Boncesecelee Poida | Mo dane

ICAOSDDP 2020: 14. International Conference on Aspect-Oriented Software
Development, Design and Programming
September 24-25, 2020 in London, United Kingdom

Next class...

 Discuss project ideas, timeline, meetings, teams, etc.
* Answer more questions from readings 1-4

e (Maybe) start a preface to monitor synthesis

Reading for next class is assignhed

e Goals
 How to read software engineering papers

* See some problems RV still needs to solve to become
widely adopted

What we covered in this class

* Instrumentation is important in many software
engineering tasks, including RV

* We learned the basics of one instrumentation tool
* An introduction to aspect-oriented programming

* Hands-on exposure to Aspect)

