
CS 6156

LTL Monitor Synthesis

Owolabi Legunsen

Fall 2020

1

Logistics

• Project proposals are due 10/6 AoE

• Homework 1 (likely) released next week

2

From last lecture…

• ptLTL monitor synthesis

• Monitoring with Maude and a monitor synthesis
algorithm

• Can you write your own generic monitoring
algorithm for ptLTL without synthesizing monitors?

3

In this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs

4

In this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs

5

Not in this lecture

• Asynchronous Maude “interpreter” monitoring algorithm

• Synthesis of dynamic-algorithm monitors for LTL
• It’s like the one in the last class on ptLTL

• But it traverses traces backwards, i.e., it works asynchronously

• A more efficient “online” monitoring algorithm in Maude

6

LTL Syntax

φ ≔ p | (φ) | ¬φ | φ ∧ φ’ | φ ∨ φ’ | ∘φ | φ � φ’ | □φ | ◊φ

7

• p – a proposition over state (event) variables
• ∘φ – “next”
• φ � φ’ – “until”
• □φ – “always”, “forever”, “box”
• ◊φ – “eventually”, “sometime”, “diamond”

LTL standard model

� : ℕ+→ 2� for some set of atomic propositions �

• � maps each time point to the set of propositions
that hold at that point

8

LTL Semantics (informally)

9

p

φ

φ φ φ φ φ φ’

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ

φ

p

∘φ

φ � φ’

□φ

◊φ

Finite trace future time LTL semantics

• In RV, we only have finite traces. So we need a
different semantics over finite traces

• Finite trace �: a non-empty finite sequence of
states, each state denoting the set of propositions
that hold at that state
• State == Event?

10

Finite trace future time LTL prelims

11

• head (e, t) = head (e) = e

• tail (e, t) = t

• length(e) = 1

• length(e, t) = 1 + length(t)

• �i : suffix of trace � that starts at position i

Finite trace future time LTL (1)

12

� ⊧ true iff true

� ⊧ false iff false

� ⊧ p iff p ∈ ℎ���(�)

� ⊧ φ ∧ φ’ iff � ⊧ φ and � ⊧ φ’

� ⊧ φ ++ φ’ iff � ⊧ φ xor � ⊧ φ’

� ⊧ ∘φ iff if ����(�) is defined then ����(�) ⊧ φ else � ⊧ φ

� ⊧ ◊φ iff (∃� ≤ �����ℎ(�)) �i ⊧ φ

� ⊧ □φ iff (∀� ≤ �����ℎ(�)) �i ⊧ φ

� ⊧ φ � φ’ iff (∃� ≤ �����ℎ(�)) (�i ⊧ φ’ and (∀j< �) �j ⊧ φ)

� ⊧ f when a trace � satisfies a formula f, defined as

Finite trace future time LTL (2)

13

φ∘φ
����(�)

∘φ
����(�)

� ⊧ ∘φ iff if ����(�) is defined then ����(�) ⊧ φ else � ⊧ φ

Case 1: ����(�) is defined

Case 2: ����(�) is not defined

Finite trace future time LTL (3)

14

φ◊φ
� = 8

� ⊧ ◊φ iff (∃� ≤ �����ℎ(�)) �i ⊧ φ

Recall: �i is the suffix of trace � that starts at position i

Finite trace future time LTL (4)

15

φ φ φ φ φ φ’φ � φ’

� = 6

� ⊧ φ � φ’ iff (∃� ≤ �����ℎ(�)) (�i ⊧ φ’ and (∀j< �) �j ⊧ φ)

Recall: �i is the suffix of trace � that starts at position i

Binary Decision Diagrams: examples

Given ((A ∧ B) ∨ ¬C), where A, B, C are propositions

16

A

C B

Ctrue false true

false true

false

false

false

false

true

true

true

true

What do you notice about this BDD?

Binary Decision Diagrams: examples

Given ((A ∧ B) ∨ ¬C), where A, B, C are propositions

17

A

C B

Ctrue false true

false true

false

false

false

false

true

true

true

true

C

B

A

true

false

false true

false

false

false

true

true

true

What do you notice about this BDD?

Some things to know about BDDs

• A way to represent Boolean formulas

• A formula can have many BDD representations

• Problem: find a BDD that is “most efficient”
• The order of propositions in the BDD is important

• Procedures exist for
• creating a BDD from a formula

• creating a Reduced-order BDD from a BDD

18

Our LTL monitor-synthesis goal

• Synthesize an FSM that receives an event θ and
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition?

• What is binary-transition tree?

19

Multi-transitions
• Let S be a set of states s.t. {s1, s2, …, sn} ∈ S

• Let A be a set of atomic predicates s.t.

• p1, p2, …, pn are propositions over atoms in A

• p1 ∨ p2 ∨ … ∨ pn holds

• for any distinct pi and pj, pi → ¬pj

• Then, [p1? s1, p2 ? s2, …, pn ? sn] is a multi-transition
(MT) over S and A

• MT(S, A) is the set of MTs over S and A

20

Multi transitions on events

• Let θ be an event

• Then θMT is a function that maps MTs to states after
θ is received

21

θMT ([p1? s1, p2 ? s2, …, pn ? sn]) = si if θ(pi) = true

Binary Transition Trees (BTTs)

• Syntax
• BTT ≔ S | (A ? BTT: BTT)

• Let BTT(S, A) be the set of BTTs over S and A

• Then θBTT is a function that maps BTTs to states
after event θ is received

22

θBTT(s) = s for any s ∈ S,
θBTT(a ? b1 : b2) = θBTT(b1) if θ(a) is true, and
θBTT(a ? b1 : b2) = θBTT(b2) if θ(a) is false

Relating MTs and BTTs

A BTT b in BTT(S, A) implements a MT t in MT(S, A) iff
θBTT(b) = θMT(t) for any event θ

23

BTT Example

a1 ? a2 ? s1 : a3 ? violation : s2 : a3 ? s2 : validation

24

a1

a2 a3

s2s1 a3 validation

violation s2

true

true

true

true

false

false

false

false

A

C B

Ctrue false true

false true

false

false

false

false

true

true

true

true

BTTs as generalizations of BDDs?

Recall: our goal

• Synthesize an FSM that receives an event θ and
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition?

• What is binary-transition tree?

25

MT-FSM

• An MT-FSM is a triple (S, A, µ), where S is a set of
states, A is a set of atomic predicates, and µ is a
map from S − {viola�on, valida�on} to MT(S, A).
• In a terminating MT-FSM*, µ* maps to MT({violation,

validation} , A).

• If we reach {violation, validation}, stay there

• On event θ, transition s → s’ denotes θMT (µ(s)) = s’

26

θ

MT-FSM by example

27

BTT-FSM

• A BTT-FSM is a triple (S, A, β), where S is a set of
states, A is a set of atomic predicates, and β is a
map from S − {viola�on, valida�on} to BTT(S, A).
• In a terminating BTT-FSM*, β* maps to BTT({violation,

validation} , A).

• If we reach {violation, validation}, stay there

• On event θ, transition s → s’ denotes θBTT (β(s)) = s’

28

θ

BTT-FSM by example

29

BTT-FSMs are efficient MT-FSMs

• One way to think about it informally
• BTT-FSMs are to MT-FSMs what RoBDDs are to BDDs

• Another way to think about it informally
• MT-FSMs: many if-then statements, all conditions evaluated

• BTT-FSMs: if-then-else sequence, only some conditions
usually need to be evaluated

• LTL synthesis: LTL spec MT-FSM BTT-FSM

30

Why not LTL BTT-FSMs?

• Short answer: state mergeability is well defined and
allows for more elegant LTL MT-FSM conversion

31

• MERGE is used in the LTL2MT-FSM algorithm

• Is this elegance at the cost of efficiency?

MT-FSM BTT-FSM conversion

• Recall: many BDDs can represent the same formula

• Similarly, many BTTs can represent the same MT

• How do we find optimal BTT for an MT?
• Enumerate BTT all and pick the most efficient

• Is it time to revisit the optimal BTT problem
(probabilities, cost, new algorithm)?

32

Zoom break (3 minutes)

33

□(green → ¬red � yellow)

LTL spec MT-FSM preliminaries

34

LTL2MT-
FSM

φ MT-FSM

MT-FSM states are formulas

φ contains all event names

Key idea: After event θ occurs, what formulas can φ be re-written to?

Terminal states: what if θ is the last event in the trace?

Formula rewriting basics
• Intuition:
• Let trace � = E, T consist of event E followed by trace T

• Formula X holds on � iff X{E} holds on T

• If E is terminal, then X{E*} holds iff X holds in standard
LTL semantics

• Rewrite rules:

35

X must hold now (X{E})

and in the future (□X)

Formula rewriting example (1)
• Let X = □(green → ¬red � yellow), E = green yellow

• X =*=> □(true ++ green ++ green ∧ (true ++ red) � yellow)

36

Formula rewriting example (2)
• Let X = □(green → ¬red � yellow), E = green

• X =*=> □(true ++ green ++ green ∧ (true ++ red) � yellow)

37

Rewriting takes many steps! Sections 4.2 and 6.1 have details

Theorem 2: rewriting terminates (among other things)

LTL2MT-FSM algorithm (1)

38

LTL2MT-FSM algorithm (2)

39

S is the set of states
(initialized to {φ})

LTL2MT-FSM algorithm (3)

40

For each state formula φ
in S, maintain terminal
(µ*(φ)) and non-
terminal (µ(φ)) states

LTL2MT-FSM algorithm (4)

41

Update µ*(φ) by
considering θ to be
the last event

LTL2MT-FSM algorithm (5)

42

Rewrite φ to φ{θ}

LTL2MT-FSM algorithm (6)

43

Did we see φ’ = φ{θ}?

LTL2MT-FSM algorithm (7)

44

Yes: modify the
transition set of φ to
point to φ’

LTL2MT-FSM algorithm (8)

45

No:
1.Add φ’ to S,
2.add a non-terminal state to µ(φ),
3.what formulas can φ’(θ) rewrite to?

LTL2MT-FSM algorithm (9)

46

Optimization???

LTL2MT-FSM algorithm (10)

47

By now, we generated
all possible LTL formulas
to which φ can ever
evolve (modulo finite
state semantics)

By (the almighty) theorem
2, this will terminate

LTL2MT-FSM algorithm (6, again)

48

Homework: what is valid?

What we saw in this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs

49

Next lecture

• ERE monitor synthesis
• Reading is assigned

50

