CS 6156

LTL Monitor Synthesis

Owolabi Legunsen

Fall 2020

Logistics

- Project proposals are due 10/6 AoE
- Homework 1 (likely) released next week

From last lecture...

- ptLTL monitor synthesis
- <u>Monitoring</u> with Maude and a <u>monitor synthesis</u> algorithm
- Can you write your own generic monitoring algorithm for ptLTL without synthesizing monitors?

In this lecture...

- LTL syntax and semantics
- Intro to BDDs
- "Special" FSMs that LTL specs get translated to
- Algorithms for translating LTL to FSMs

In this lecture...

- LTL syntax and semantics
- Intro to BDDs
- "Special" FSMs that LTL specs get translated to
- Algorithms for translating LTL to FSMs

Not in this lecture

- Asynchronous Maude "interpreter" monitoring algorithm
- Synthesis of dynamic-algorithm monitors for LTL
 - It's like the one in the last class on ptLTL
 - But it traverses traces backwards, i.e., it works asynchronously
- A more efficient "online" monitoring algorithm in Maude

LTL Syntax

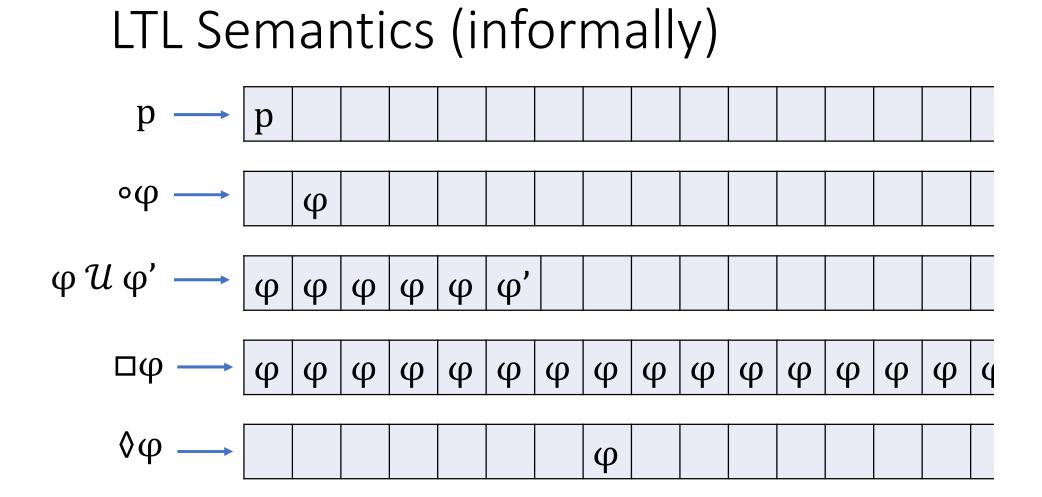
 $\phi\coloneqq p\mid (\phi)\mid \neg\phi\mid\phi\wedge\phi'\mid\phi\vee\phi'\mid\circ\phi\mid\phi\mathcal{U}\;\phi'\mid\Box\phi\mid\Diamond\phi$

- p a proposition over state (event) variables
- $\circ \phi$ "next"
- $\phi \mathcal{U} \phi'$ "until"
- $\Box \phi$ "always", "forever", "box"
- $\phi \text{"eventually", "sometime", "diamond"}$

LTL standard model

 $t: \mathbb{N}^+ \rightarrow 2^{\mathcal{P}}$ for some set of atomic propositions \mathcal{P}

 t maps each time point to the set of propositions that hold at that point



Finite trace future time LTL semantics

- In RV, we only have finite traces. So we need a different semantics over finite traces
- Finite trace t: a non-empty finite sequence of states, each state denoting the set of propositions that hold at that state
 - State == Event?

Finite trace future time LTL prelims

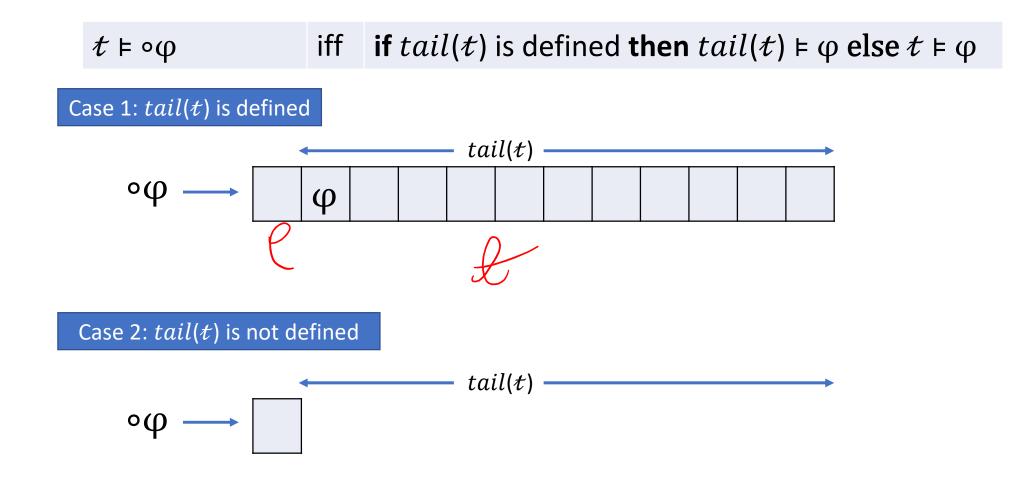
- head (e, t) = head (e) = e
- tail (e, t) = t
- length(e) = 1
- length(e, t) = 1 + length(t)
- t_i : suffix of trace t that starts at position i

Finite trace future time LTL (1)

 $t \models f$ when a trace t satisfies a formula f, defined as

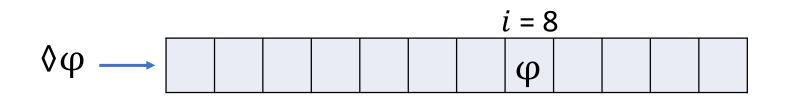
<i>t</i> ⊧ true	iff	true
$t \models false$	iff	false
t⊧p	iff	$p \in head(t)$
$t \models \phi \land \phi'$	iff	$t \models \phi$ and $t \models \phi'$
$t \models \phi + + \phi'$	iff	$t \models \phi \operatorname{xor} t \models \phi'$
$t \models \circ \phi$	iff	if $tail(t)$ is defined then $tail(t) \models \phi$ else $t \models \phi$
$t \models \Diamond \phi$	iff	$(\exists i \leq length(t)) t_i \models \varphi$
t ⊧ □ $φ$	iff	$(\forall i \leq length(t)) t_i \models \phi$
$t \models \phi \mathcal{U} \phi'$	iff	$(\exists i \leq length(t)) \ (t_i \models \phi' \text{ and } (\forall j < i) \ t_j \models \phi)$

Finite trace future time LTL (2)



Finite trace future time LTL (3)

 $t \models \Diamond \phi \text{ iff } (\exists i \leq length(t)) t_i \models \phi$



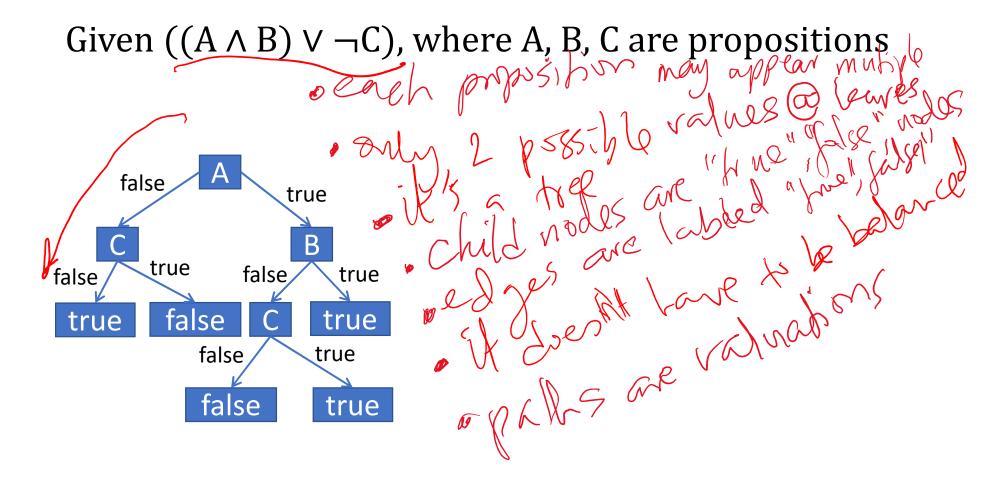
Recall: t_i is the suffix of trace t that starts at position i

Finite trace future time LTL (4)

 $t \models \varphi \mathcal{U} \varphi' \qquad \text{iff} \quad (\exists i \leq length(t)) \ (t_i \models \varphi' \text{ and } (\forall j < i) \ t_j \models \varphi)$ i = 6 $\varphi \mathcal{U} \varphi' \longrightarrow \varphi \varphi \varphi \varphi \varphi \varphi \varphi' \varphi \varphi'$

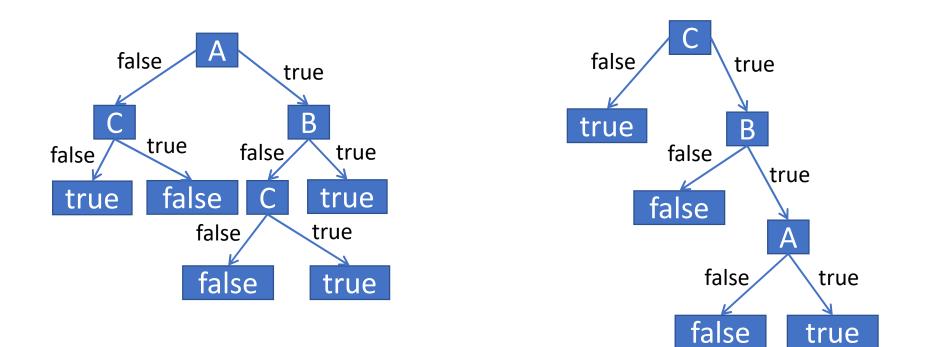
Recall: t_i is the suffix of trace t that starts at position i

Binary Decision Diagrams: examples



What do you notice about this BDD?

Binary Decision Diagrams: examples Given (($A \land B$) $\lor \neg C$), where A, B, C are propositions



What do you notice about this BDD?

Some things to know about BDDs

- A way to represent Boolean formulas
- A formula can have many BDD representations
- Problem: find a BDD that is "most efficient"
 - The order of propositions in the BDD is important
- Procedures exist for
 - creating a BDD from a formula
 - creating a Reduced-order BDD from a BDD

Our LTL monitor-synthesis goal

- Synthesize an FSM that receives an event θ and transitions as fast as possible to a new state
- We will explore two such FSMs
 - Multi-transition FSMs
 - Binary-transition tree FSMs
- What is a multi-transition?
- What is binary-transition tree?

Multi-transitions

- Let S be a set of states s.t. $\{s_1, s_2, ..., s_n\} \in S$
- Let A be a set of atomic predicates s.t.
 - p₁, p₂, ..., p_n are propositions over atoms in A
 - $p_1 \vee p_2 \vee \dots \vee p_n$ holds
 - for any distinct \textbf{p}_{i} and $\textbf{p}_{j},\,\textbf{p}_{i}\rightarrow\neg\textbf{p}_{j}$
- Then, [p₁? s₁, p₂? s₂, ..., p_n? s_n] is a multi-transition (MT) over S and A
- MT(S, A) is the set of MTs over S and A

Multi transitions on events

- Let θ be an event
- Then θ_{MT} is a function that maps MTs to states after θ is received

 $\theta_{MT}([p_1? s_1, p_2? s_2, ..., p_n? s_n]) = s_i \text{ if } \theta(p_i) = true$

Binary Transition Trees (BTTs)

- Syntax
 - BTT := S | (A ? BTT: BTT)
- Let BTT(S, A) be the set of BTTs over S and A
- Then θ_{BTT} is a function that maps BTTs to states after event θ is received

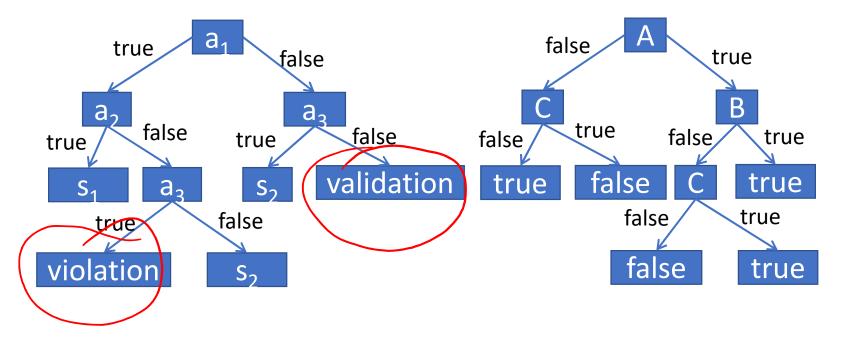
 $\begin{array}{l} \theta_{\text{BTT}}(s) = s \text{ for any } s \in S, \\ \theta_{\text{BTT}}(a \ ? \ b_1 : b_2) = \theta_{\text{BTT}}(b_1) \text{ if } \theta(a) \text{ is } true, \text{ and} \\ \theta_{\text{BTT}}(a \ ? \ b_1 : b_2) = \theta_{\text{BTT}}(b_2) \text{ if } \theta(a) \text{ is } false \end{array}$

Relating MTs and BTTs

A BTT *b* in *BTT*(*S*, *A*) *implements* a MT *t* in *MT*(*S*, *A*) iff $\theta_{BTT}(b) = \theta_{MT}(t)$ for any event θ

BTT Example

 a_1 ? a_2 ? s_1 : a_3 ? violation : s_2 : a_3 ? s_2 : validation



BTTs as generalizations of BDDs?

Recall: our goal

- Synthesize an FSM that receives an event θ and transitions as fast as possible to a new state
- We will explore two such FSMs
 - Multi-transition FSMs
 - Binary-transition tree FSMs

What is a multi-transition?

what is billary transition tree:

MT-FSM

- An MT-FSM is a triple (S, A, μ), where S is a set of states, A is a set of atomic predicates, and μ is a map from S – {violation, validation} to MT(S, A).
 - In a terminating MT-FSM*, μ* maps to MT({violation, validation}, A).
- If we reach {violation, validation}, stay there
- On event θ , transition s $\xrightarrow{\theta}$ s' denotes $\theta_{MT}(\mu(s)) = s'$

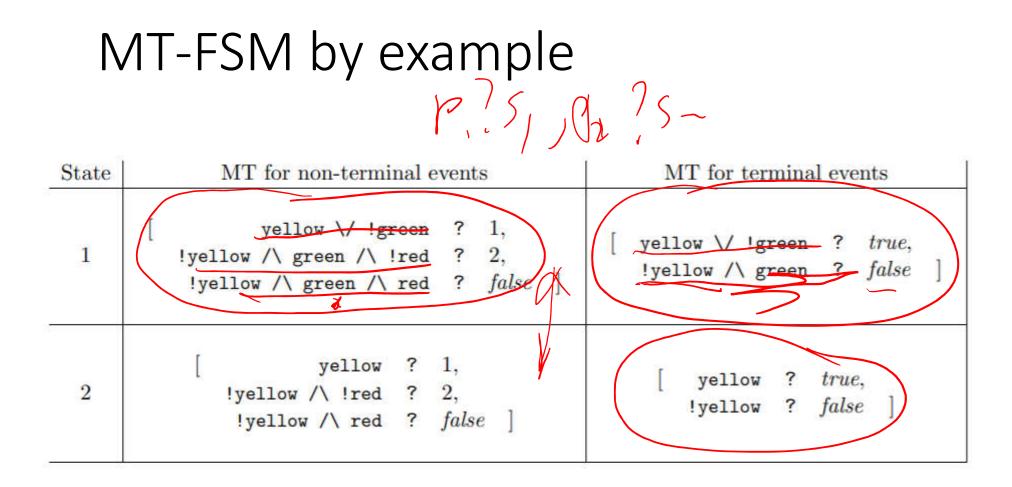


Figure 3: MT-FSM for the formula [] (green -> !red U yellow).

BTT-FSM

- A BTT-FSM is a triple (S, A, β), where S is a set of states, A is a set of atomic predicates, and β is a map from S – {violation, validation} to BTT(S, A).
 - In a terminating BTT-FSM*, β* maps to BTT({violation, validation}, A).
- If we reach {violation, validation}, stay there
- On event θ , transition s $\xrightarrow{\theta}$ s' denotes $\theta_{BTT}(\beta(s)) = s'$

BTT-FSM by example

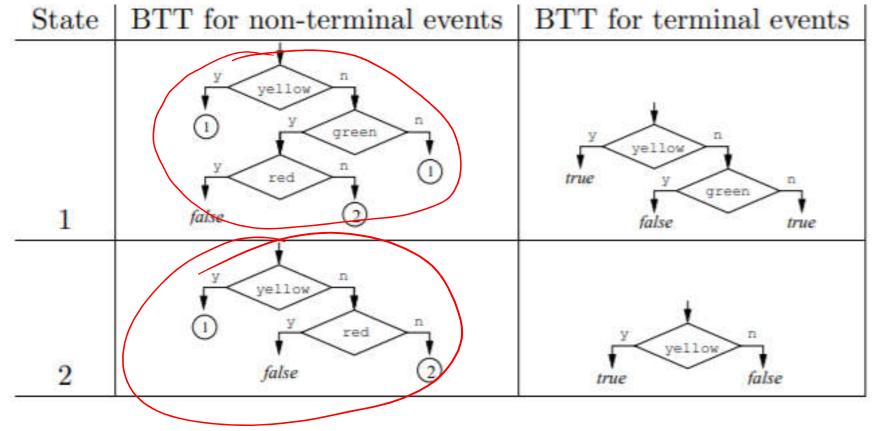


Figure 4: A BTT-FSM for the formula [] (green -> !red U yellow).

BTT-FSMs are efficient MT-FSMs

- One way to think about it informally
 - BTT-FSMs are to MT-FSMs what RoBDDs are to BDDs
- Another way to think about it informally
 - MT-FSMs: many if-then statements, all conditions evaluated
 - BTT-FSMs: if-then-else sequence, only some conditions usually need to be evaluated
- LTL synthesis: LTL spec \rightarrow MT-FSM \rightarrow BTT-FSM

Why not LTL \rightarrow BTT-FSMs?

 Short answer: state mergeability is well defined and allows for more elegant LTL → MT-FSM conversion

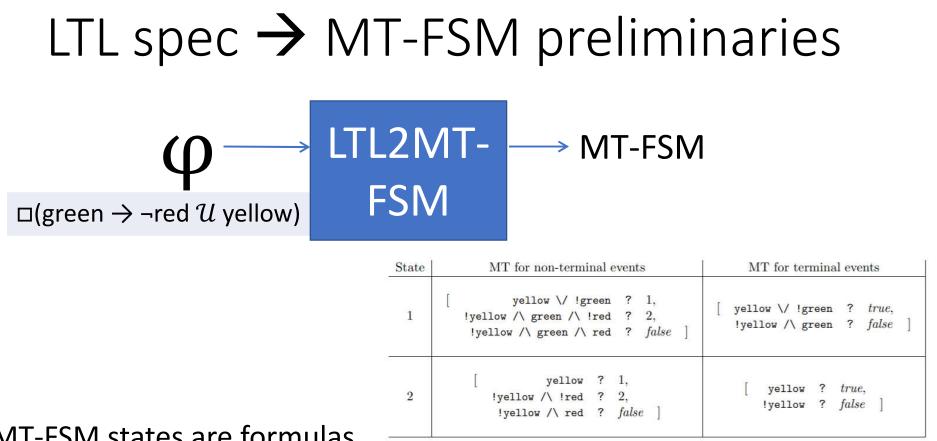
 $\begin{array}{l} \mathrm{MERGE}([p_1?s_1, p_2?s_2, ..., p_n?s_n], [p_1'?s_1', p_2'?s_2', ..., p_n'?s_{n'}])\\ \mathrm{contains \ all \ choices \ } p?s'', \ \mathrm{where \ } s'' \ \mathrm{is \ a \ state \ in \ } \{s_1, s_2, ..., s_n\} \cup \{s_1', s_2', ..., s_{n'}'\} \ \mathrm{and} \end{array}$

- p is p_i when $s'' = s_i$ for some $1 \le i \le n$ and $s'' \ne s'_{i'}$ for all $1 \le i' \le n'$, or
- p is $p'_{i'}$ when $s'' = s'_{i'}$ for some $1 \le i' \le n'$ and $s'' \ne s_i$ for all $1 \le i \le n$, or
- p is $p_i \vee p'_{i'}$ when $s'' = s_i$ for some $1 \le i \le n$ and $s'' = s'_{i'}$ for some $1 \le i' \le n'$.
- MERGE is used in the LTL2MT-FSM algorithm
- Is this elegance at the cost of efficiency?

$\mathsf{MT}\text{-}\mathsf{FSM} \xrightarrow{} \mathsf{BTT}\text{-}\mathsf{FSM} \text{ conversion}$

- Recall: many BDDs can represent the same formula
- Similarly, many BTTs can represent the same MT
- How do we find optimal BTT for an MT?
 - Enumerate BTT all and pick the most efficient
- Is it time to revisit the optimal BTT problem (probabilities, cost, new algorithm)?

Zoom break (3 minutes)



MT-FSM states are formulas

 φ contains all event names

Key idea: After event θ occurs, what formulas can ϕ be re-written to?

Terminal states: what if θ is the last event in the trace?

Formula rewriting basics

- Intuition:
 - Let trace t = E, T consist of event E followed by trace T
 Formula X holds on t iff X{E} holds on T
 - If E is terminal, then X{E*} holds iff X holds in standard LTL semantics

Formula rewriting example (1)

- Let X = \Box (green $\rightarrow \neg$ red \mathcal{U} yellow), E = green yellow
- X =*=> \Box (true ++ green ++ green \land (true ++ red) \mathcal{U} yellow)

([](true ++ green ++ green /\ (true ++ red) U yellow)){green yellow} =*=>
(true ++ green{green yellow}
 ++ green{green yellow} /\ ((true ++ red) U yellow){green yellow})
 /\ [](true ++ green ++ green /\ (true ++ red) U yellow) =*=>
((true ++ red) U yellow){green yellow})
 /\ [](true ++ green ++ green /\ (true ++ red) U yellow) =*=>
(yellow{green yellow} \/ ((true ++ red{green yellow}) /\ (true ++ red) U yellow)
 /\ [](true ++ green ++ green /\ (true ++ red) U yellow) =*=>
[](true ++ green ++ green /\ (true ++ red) U yellow)

Formula rewriting example (2)

- Let X = \Box (green $\rightarrow \neg$ red \mathcal{U} yellow), E = green
- X =*=> \Box (true ++ green ++ green \land (true ++ red) \mathcal{U} yellow)

([](true ++ green ++ green /\ (true ++ red) U yellow)){green} =*=>
(true ++ green{green}
 ++ green{green} /\ ((true ++ red) U yellow){green})
 /\ [](true ++ green ++ green /\ (true ++ red) U yellow) =*=>
((true ++ red) U yellow){green})
 /\ [](true ++ green ++ green /\ (true ++ red) U yellow)
 /\ [](true ++ green ++ green /\ (true ++ red) U yellow)
 /\ [](true ++ green ++ green /\ (true ++ red) U yellow) =*=>
(true ++ red) U yellow /\ [](true ++ green ++ green ++ green /\ (true ++ red) U yellow)

Rewriting takes many steps! Sections 4.2 and 6.1 have details

Theorem 2: rewriting terminates (among other things)

LTL2MT-FSM algorithm (1)

1. let S be φ 2. procedure LTL2MT-FSM(φ) 3. let $\mu^*(\varphi)$ be \emptyset 4. let $\mu(\varphi)$ be \emptyset foreach $\theta : A \to \{true, false\}$ do 5. let e_{θ} be the list of atoms a with $\theta(a) = true$ 6. 7. **let** p_{θ} **be** the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}$ let $\mu^{\star}(\varphi)$ be MERGE($[p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi)$) 8. 9. let φ_{θ} be $\varphi\{e_{\theta}\}$ if there is $\varphi' \in S$ with VALID $(\varphi_{\theta} \leftrightarrow \varphi')$ 10. then let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi'], \mu(\varphi)$) 11. 12. else let S be $S \cup \{\varphi_{\theta}\}$ 13. let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$) 14. LTL2MT-FSM(φ_{θ}) 15.endfor if $\mu(\varphi) = [true ? \varphi]$ and $\mu^*(\varphi) = [true ? b]$ then replace φ by b everywhere 16. 17. endprocedure

Figure 5: Algorithm to generate a minimal MT-FSM* $(S, A, \mu, \mu^*, \varphi)$ from an LTL formula φ .

LTL2MT-FSM algorithm (2)

1 let S be φ

- 2. procedure LTL2MT-FSM(φ)
- 3. let $\mu^{\star}(\varphi)$ be \emptyset
- 4. let $\mu(\varphi)$ be \emptyset
- 5. for each $\theta : A \rightarrow \{true, false\}$ do
- 6. **let** e_{θ} **be** the list of atoms a with $\theta(a) = true$
- 7. **let** p_{θ} **be** the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}$
- 8. let $\mu^{\star}(\varphi)$ be MERGE $([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))$
- 9. let φ_{θ} be $\varphi\{e_{\theta}\}$
- 10. **if** there is $\varphi' \in S$ with $VALID(\varphi_{\theta} \leftrightarrow \varphi')$
- 11. then let $\mu(\varphi)$ be MERGE $([p_{\theta} ? \varphi'], \mu(\varphi))$
- 12. else let S be $S \cup \{\varphi_{\theta}\}$
- 13. let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$)
- 14. LTL2MT-FSM(φ_{θ})

15. endfor

- 16. **if** $\mu(\varphi) = [true ? \varphi]$ and $\mu^{\star}(\varphi) = [true ? b]$ **then** replace φ by *b* everywhere
- 17. endprocedure

S is the set of states (initialized to {φ})

LTL2MT-FSM algorithm (3)

1. let S be φ		
2. procedure LTL2MT-FSM(φ)		
3. let $\mu^{\star}(\varphi)$ be \emptyset		
4. let $\mu(\varphi)$ be \emptyset		
5. foreach $\theta : A \to \{true, false\}$ do		
6. let e_{θ} be the list of atoms a with $\theta(a) = true$		
7. let p_{θ} be the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}$		
8. let $\mu^{\star}(\varphi)$ be MERGE($[p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi)$)		
9. let φ_{θ} be $\varphi\{e_{\theta}\}$		
10. if there is $\varphi' \in S$ with $VALID(\varphi_{\theta} \leftrightarrow \varphi')$		
11. then let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi'], \mu(\varphi)$)		
12. else let S be $S \cup \{\varphi_{\theta}\}$		
13. let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$)		
14. LTL2MT-FSM(φ_{θ})		
15. endfor		
16. if $\mu(\varphi) = [true ? \varphi]$ and $\mu^{\star}(\varphi) = [true ? b]$ then replace φ by b everywhere		
17. endprocedure		

For each state formula φ in S, maintain terminal $(\mu^*(\varphi))$ and nonterminal $(\mu(\varphi))$ states

LTL2MT-FSM algorithm (4)

1. let <i>S</i> be φ 2. procedure LTL2MT-FSM(φ) 3. let $\mu^*(\varphi)$ be \emptyset 4. let $\mu(\varphi)$ be \emptyset 5. foreach $\theta : A \to \{true, false\}$ do 6. let e_{θ} be the list of atoms <i>a</i> with $\theta(a) = true$ 7. let p_{θ} be the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \land \{\neg a \mid \theta(a) = false\}$ 8. let $\mu^*(\varphi)$ be MERGE($[p_{\theta} ? \varphi\{e_{\theta}^*\}], \mu^*(\varphi)$) 9. let φ_{θ} be $\varphi\{e_{\theta}\}$ 10. if there is $\varphi' \in S$ with VALID($\varphi_{\theta} \leftrightarrow \varphi'$) 11. then let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi'], \mu(\varphi)$)	Update μ*(φ) by considering θ to be the last event
12. else let S be $S \cup \{\varphi_{\theta}\}$	
13. let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$)	
14. LTL2MT-FSM(φ_{θ})	
15. endfor	
16. if $\mu(\varphi) = [true ? \varphi]$ and $\mu^{\star}(\varphi) = [true ? b]$ then replace φ by b everywhere	
17. endprocedure	

LTL2MT-FSM algorithm (5)

$\begin{array}{c} 2. \\ 3. \\ 4. \\ 5. \\ 6. \\ 7. \\ 8. \\ 9. \\ 10. \\ 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 16. \end{array}$	Let S be φ procedure LTL2MT-FSM(φ) let $\mu^*(\varphi)$ be \emptyset foreach $\theta : A \to \{true, false\}$ do let e_{θ} be the list of atoms a with $\theta(a) = true$ let p_{θ} be the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \land \{\neg a \mid \theta(a) = false\}$ let $\mu^*(\varphi)$ be MERGE($[p_{\theta} ? \varphi\{e_{\theta}^*\}], \mu^*(\varphi)$) let φ_{θ} be $\varphi\{e_{\theta}\}$ if there is $\varphi' \in S$ with VALID($\varphi_{\theta} \leftrightarrow \varphi'$) then let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi'], \mu(\varphi)$) else let S be $S \cup \{\varphi_{\theta}\}$ let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$)) LTL2MT-FSM(φ_{θ}) endfor if $\mu(\varphi) = [true ? \varphi]$ and $\mu^*(\varphi) = [true ? b]$ then replace φ by b everywhere endprocedure	
17. 0	endprocedure	

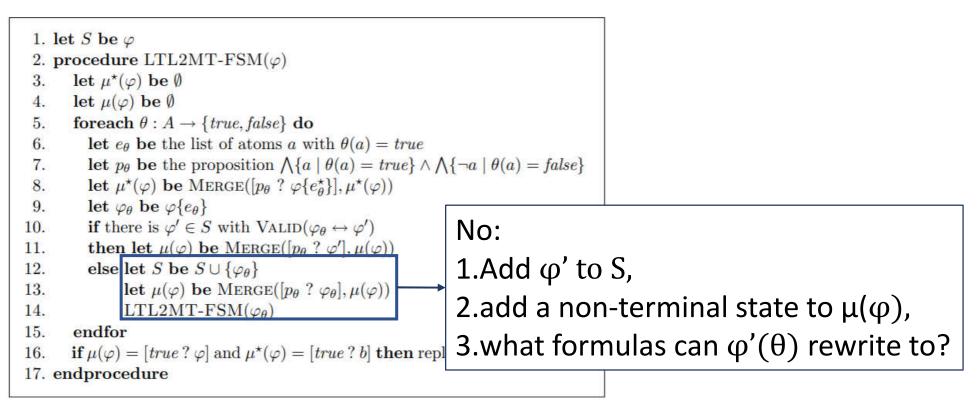
LTL2MT-FSM algorithm (6)

1. let S be φ 2. procedure LTL2MT-FSM(φ) 3. let $\mu^*(\varphi)$ be \emptyset 4. let $\mu(\varphi)$ be \emptyset 5. foreach $\theta : A \to \{true, false\}$ do 6. let e_{θ} be the list of atoms a with $\theta(a) = true$	
7. let p_{θ} be the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}$ 8. let $\mu^{\star}(\varphi)$ be $\operatorname{MERGE}([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))$ 9. let φ_{θ} be $\varphi\{e_{\theta}\}$ 10. lif there is $\varphi' \in S$ with $\operatorname{VALID}(\varphi_{\theta} \leftrightarrow \varphi')$ 11. then let $\mu(\varphi)$ be $\operatorname{MERGE}([p_{\theta} ? \varphi'], \mu(\varphi))$ 12. else let S be $S \cup \{\varphi_{\theta}\}$	Did we see $\varphi' = \varphi\{\theta\}$?
13. let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$) 14. LTL2MT-FSM(φ_{θ})	
15. endfor 16. if $\mu(\varphi) = [true? \varphi]$ and $\mu^{\star}(\varphi) = [true? b]$ then replace φ by b everywhere 17. endprocedure	

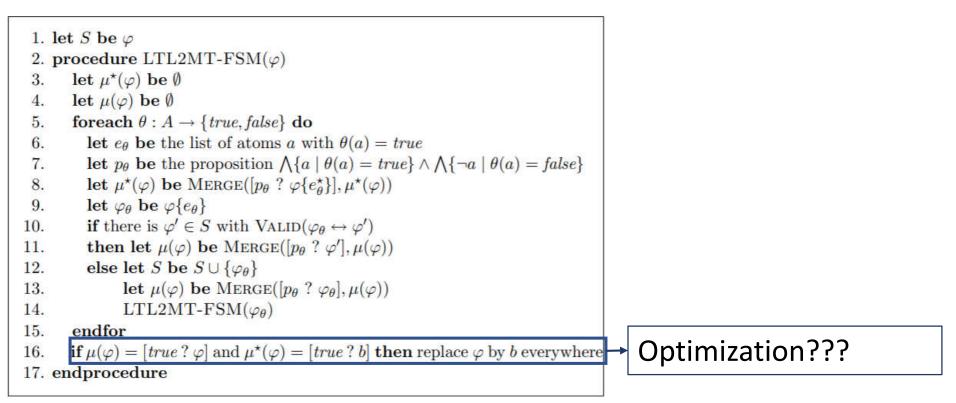
LTL2MT-FSM algorithm (7)

1. l	et S be φ	
2.]	procedure LTL2MT-FSM(φ)	
3.	let $\mu^{\star}(\varphi)$ be \emptyset	
4.	let $\mu(\varphi)$ be \emptyset	
5.	foreach $\theta: A \to \{true, false\}$ do	
6.	let e_{θ} be the list of atoms a with $\theta(a) = true$	
7.	let p_{θ} be the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}$	
8.	let $\mu^{\star}(\varphi)$ be MERGE $([p_{\theta} ? \varphi\{e_{\theta}^{\star}\}], \mu^{\star}(\varphi))$	
9.	let φ_{θ} be $\varphi\{e_{\theta}\}$	Yes: modify the
10.	if there is $\varphi' \in S$ with $VALID(\varphi_{\theta} \leftrightarrow \varphi')$	-
11.	then let $\mu(\varphi)$ be MERGE $([p_{\theta}? \varphi'], \mu(\varphi))$	• transition set of ϕ to
12.	else let S be $S \cup \{\varphi_{\theta}\}$	-
13.	let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$)	point to φ'
14.	$LTL2MT$ - $FSM(\varphi_{\theta})$	· ·
15.	endfor	
16.	if $\mu(\varphi) = [true ? \varphi]$ and $\mu^{\star}(\varphi) = [true ? b]$ then replace φ by b everywhere	
17. 6	endprocedure	

LTL2MT-FSM algorithm (8)



LTL2MT-FSM algorithm (9)

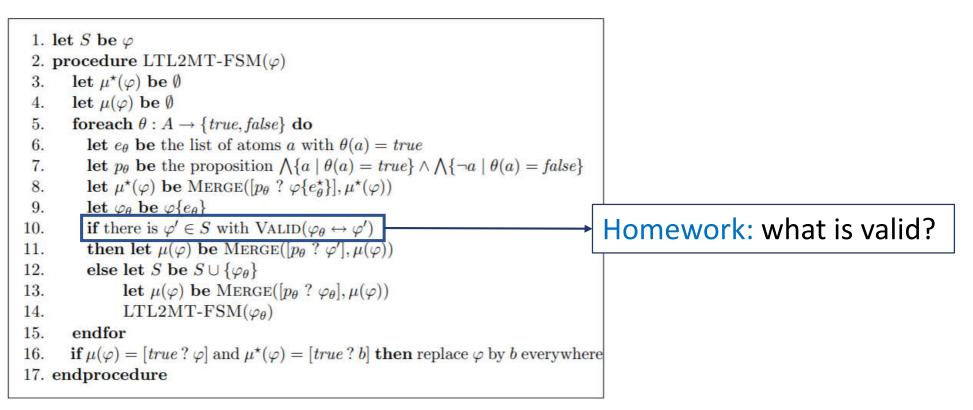


LTL2MT-FSM algorithm (10)

1. let S be φ]
2. procedure LTL2MT-FSM(φ)	
3. let $\mu^*(\varphi)$ be \emptyset 4. let $\mu(\varphi)$ be \emptyset 5. for each $\theta : A \to \{true, false\}$ do 6. let e_{θ} be the list of atoms a with $\theta(a) = true$ 7. let p_{θ} be the proposition $\bigwedge \{a \mid \theta(a) = true\} \land \bigwedge \{\neg a \mid \theta(a) = false\}$ 8. let $\mu^*(\varphi)$ be MERGE($[p_{\theta} ? \varphi\{e_{\theta}^*\}], \mu^*(\varphi)$) 9. let φ_{θ} be $\varphi\{e_{\theta}\}$ 10. if there is $\varphi' \in S$ with VALID($\varphi_{\theta} \leftrightarrow \varphi'$) 11. then let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi'], \mu(\varphi)$)	
12. else let S be $S \cup \{\varphi_{\theta}\}$ 13. let $\mu(\varphi)$ be MERGE($[p_{\theta} ? \varphi_{\theta}], \mu(\varphi)$) 14. LTL2MT-FSM(φ_{θ}) 15. endfor 16. if $\mu(\varphi) = [true ? \varphi]$ and $\mu^{\star}(\varphi) = [true ? b]$ then replace φ by b everywhere 17. endprocedure	By now, we generated all possible LTL formulas to which φ can ever evolve (modulo finite state semantics)

By (the almighty) theorem 2, this will terminate

LTL2MT-FSM algorithm (6, again)



What we saw in this lecture...

- LTL syntax and semantics
- Intro to BDDs
- "Special" FSMs that LTL specs get translated to
- Algorithms for translating LTL to FSMs

Next lecture

- ERE monitor synthesis
 - Reading is assigned