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Logistics

• Project proposals are due 10/6 AoE

• Homework 1 (likely) released next week
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From last lecture…

• ptLTL monitor synthesis

• Monitoring with Maude and a monitor synthesis 
algorithm

• Can you write your own generic monitoring 
algorithm for ptLTL without synthesizing monitors?
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In this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs
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In this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs
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Not in this lecture

• Asynchronous Maude “interpreter” monitoring algorithm

• Synthesis of dynamic-algorithm monitors for LTL
• It’s like the one in the last class on ptLTL

• But it traverses traces backwards, i.e., it works asynchronously

• A more efficient “online” monitoring algorithm in Maude
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LTL Syntax

φ ≔ p | (φ) | ¬φ | φ ∧ φ’ | φ ∨ φ’ | ∘φ | φ � φ’ | □φ | ◊φ
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• p – a proposition over state (event) variables
• ∘φ – “next”
• φ � φ’ – “until”
• □φ – “always”, “forever”, “box”
• ◊φ – “eventually”, “sometime”, “diamond”



LTL standard model

� : ℕ+→ 2� for some set of atomic propositions �

• � maps each time point to the set of propositions 
that hold at that point
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LTL Semantics (informally)
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Finite trace future time LTL semantics

• In RV, we only have finite traces. So we need a 
different semantics over finite traces

• Finite trace �: a non-empty finite sequence of 
states, each state denoting the set of propositions 
that hold at that state
• State == Event?
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Finite trace future time LTL prelims
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• head (e, t) = head (e) = e

• tail (e, t) = t

• length(e) = 1

• length(e, t) = 1 + length(t)

• �i : suffix of trace � that starts at position i



Finite trace future time LTL (1)
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� ⊧ true iff true

� ⊧ false iff false

� ⊧ p iff p ∈ ℎ���(�)

� ⊧ φ ∧ φ’ iff � ⊧ φ and � ⊧ φ’

� ⊧ φ ++ φ’ iff � ⊧ φ xor � ⊧ φ’

� ⊧ ∘φ iff if ����(�) is defined then ����(�) ⊧ φ else � ⊧ φ

� ⊧ ◊φ iff (∃� ≤ �����ℎ(�)) �i ⊧ φ

� ⊧ □φ iff (∀� ≤ �����ℎ(�)) �i ⊧ φ

� ⊧ φ � φ’ iff (∃� ≤ �����ℎ(�)) (�i ⊧ φ’ and (∀j< �) �j ⊧ φ)

� ⊧ f when a trace � satisfies a formula f, defined as



Finite trace future time LTL (2)
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φ∘φ
����(�)

∘φ
����(�)

� ⊧ ∘φ iff if ����(�) is defined then ����(�) ⊧ φ else � ⊧ φ

Case 1: ����(�) is defined 

Case 2: ����(�) is not defined  



Finite trace future time LTL (3)
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φ◊φ
� = 8

� ⊧ ◊φ iff (∃� ≤ �����ℎ(�)) �i ⊧ φ

Recall: �i is the suffix of trace � that starts at position i



Finite trace future time LTL (4)
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φ φ φ φ φ φ’φ � φ’

� = 6

� ⊧ φ � φ’ iff (∃� ≤ �����ℎ(�)) (�i ⊧ φ’ and (∀j< �) �j ⊧ φ)

Recall: �i is the suffix of trace � that starts at position i



Binary Decision Diagrams: examples

Given ((A ∧ B) ∨ ¬C), where A, B, C are propositions 
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Some things to know about BDDs

• A way to represent Boolean formulas

• A formula can have many BDD representations

• Problem: find a BDD that is “most efficient”
• The order of propositions in the BDD is important

• Procedures exist for
• creating a BDD from a formula

• creating a Reduced-order BDD from a BDD
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Our LTL monitor-synthesis goal

• Synthesize an FSM that receives an event θ and 
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition? 

• What is binary-transition tree?
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Multi-transitions
• Let S be a set of states s.t. {s1, s2, …, sn} ∈ S

• Let A be a set of atomic predicates s.t.

• p1, p2, …, pn are propositions over atoms in A

• p1 ∨ p2 ∨ … ∨ pn holds

• for any distinct pi and pj, pi → ¬pj

• Then, [p1? s1, p2 ? s2, …, pn ? sn] is a multi-transition 
(MT) over S and A

• MT(S, A) is the set of MTs over S and A
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Multi transitions on events

• Let θ be an event

• Then θMT is a function that maps MTs to states after 
θ is received 
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θMT ([p1? s1, p2 ? s2, …, pn ? sn]) = si if θ(pi) = true



Binary Transition Trees (BTTs)

• Syntax
• BTT ≔ S | (A ? BTT: BTT)

• Let BTT(S, A) be the set of BTTs over S and A

• Then θBTT is a function that maps BTTs to states 
after event θ is received 
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θBTT(s)  = s for any s ∈ S,
θBTT(a ? b1 : b2)  = θBTT(b1) if θ(a) is true, and
θBTT(a ? b1 : b2) = θBTT(b2) if θ(a) is false



Relating MTs and BTTs

A BTT b in BTT(S, A) implements a MT t in MT(S, A) iff
θBTT(b) = θMT(t) for any event θ
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BTT Example

a1 ? a2 ? s1 : a3 ? violation : s2 : a3 ? s2 : validation
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Recall: our goal

• Synthesize an FSM that receives an event θ and 
transitions as fast as possible to a new state

• We will explore two such FSMs
• Multi-transition FSMs
• Binary-transition tree FSMs

• What is a multi-transition? 

• What is binary-transition tree?
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MT-FSM

• An MT-FSM is a triple (S, A, µ), where S is a set of 
states, A is a set of atomic predicates, and µ is a 
map from S − {viola�on, valida�on} to MT(S, A).
• In a terminating MT-FSM*, µ* maps to MT({violation, 

validation} , A).

• If we reach {violation, validation}, stay there

• On event θ, transition s → s’ denotes θMT (µ(s)) = s’
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θ



MT-FSM by example
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BTT-FSM

• A BTT-FSM is a triple (S, A, β), where S is a set of 
states, A is a set of atomic predicates, and β is a 
map from S − {viola�on, valida�on} to BTT(S, A).
• In a terminating BTT-FSM*, β* maps to BTT({violation, 

validation} , A). 

• If we reach {violation, validation}, stay there

• On event θ, transition s → s’ denotes θBTT (β(s)) = s’
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BTT-FSM by example
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BTT-FSMs are efficient MT-FSMs

• One  way to think about it informally
• BTT-FSMs are to MT-FSMs what RoBDDs are to BDDs

• Another way to think about it informally
• MT-FSMs: many if-then statements, all conditions evaluated

• BTT-FSMs: if-then-else sequence, only some conditions 
usually need to be evaluated

• LTL synthesis: LTL spec  MT-FSM  BTT-FSM
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Why not LTL  BTT-FSMs?

• Short answer: state mergeability is well defined and 
allows for more elegant LTL  MT-FSM conversion

31

• MERGE is used in the LTL2MT-FSM algorithm

• Is this elegance at the cost of efficiency? 



MT-FSM  BTT-FSM conversion

• Recall: many BDDs can represent the same formula

• Similarly, many BTTs can represent the same MT

• How do we find optimal BTT for an MT?
• Enumerate BTT all and pick the most efficient

• Is it time to revisit the optimal BTT problem 
(probabilities, cost, new algorithm)?

32



Zoom break (3 minutes)
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□(green → ¬red � yellow)

LTL spec  MT-FSM preliminaries
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LTL2MT-
FSM

φ MT-FSM

MT-FSM states are formulas

φ contains all event names

Key idea: After event θ occurs, what formulas can φ be re-written to?

Terminal states: what if θ is the last event in the trace?



Formula rewriting basics
• Intuition: 
• Let trace � = E, T consist of event E followed by trace T

• Formula X holds on � iff X{E} holds on T

• If E is terminal, then X{E*} holds iff X holds in standard 
LTL semantics

• Rewrite rules:
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X must hold now (X{E}) 

and in the future (□X)



Formula rewriting example (1)
• Let X = □(green → ¬red � yellow), E = green yellow

• X =*=> □(true ++ green ++ green ∧ (true ++ red) � yellow) 
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Formula rewriting example (2)
• Let X = □(green → ¬red � yellow), E = green

• X =*=> □(true ++ green ++ green ∧ (true ++ red) � yellow) 

37

Rewriting takes many steps! Sections 4.2 and 6.1 have details

Theorem 2: rewriting terminates (among other things)



LTL2MT-FSM algorithm (1)
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LTL2MT-FSM algorithm (2)
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S is the set of states 
(initialized to {φ})



LTL2MT-FSM algorithm (3)

40

For each state formula φ
in S, maintain terminal 
(µ*(φ)) and non-
terminal (µ(φ)) states



LTL2MT-FSM algorithm (4)
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Update µ*(φ) by 
considering θ to be 
the last event 



LTL2MT-FSM algorithm (5)
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Rewrite φ to φ{θ}



LTL2MT-FSM algorithm (6)
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Did we see φ’ = φ{θ}?



LTL2MT-FSM algorithm (7)
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Yes: modify the 
transition set of φ to 
point to φ’



LTL2MT-FSM algorithm (8)
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No: 
1.Add φ’ to S, 
2.add a non-terminal state to µ(φ),
3.what formulas can φ’(θ) rewrite to?



LTL2MT-FSM algorithm (9)
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Optimization??? 



LTL2MT-FSM algorithm (10)
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By now, we generated 
all possible LTL formulas 
to which φ can ever 
evolve (modulo finite 
state semantics)

By (the almighty) theorem 
2, this will terminate



LTL2MT-FSM algorithm (6, again)
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Homework: what is valid?



What we saw in this lecture…

• LTL syntax and semantics

• Intro to BDDs

• “Special” FSMs that LTL specs get translated to

• Algorithms for translating LTL to FSMs
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Next lecture

• ERE monitor synthesis
• Reading is assigned
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