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INTRODUCTION

In a distributed database system, data are
often replicated to improve performance
and availability. By storing copies of shared
data on processors where they are fre-
quently accessed, the need for expensive,
remote read accesses is decreased. By stor-
ing copies of critical data on processors
with independent failure modes, the prob-
ability that at least one copy of the data
will be accessible increases. In theory, data
replication makes it possible to provide ar-
bitrarily high data availability.

In practice, realizing the benefits of data
replication is difficult since the correctness
of data must be maintained. One important

aspect of correctness with replicated data
is mutual consistency: All copies of the same
logical data item must agree on exactly one
“current value” for the data item. Further-
more, this value should “make sense” in
terms of the transactions executed on cop-
ies of the data item. When communication
fails between sites containing copies of the
same logical data item, mutual consistency
between copies becomes complicated to en-
sure. The most disruptive of these com-
munication failures are partition failures,
which fragment the network into isolated
subnetworks called partitions. Unless par-
tition failures are detected and recognized
by all affected processors, independent and
uncoordinated updates may be applied to
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different copies of the data, thereby com-
promising the correctness of data. Con-
sider, for example, an airline reservation
system implemented by a distributed data-
base that splits into two partitions when
the communication network fails. If, at the
time of the failure, all the nodes have one
seat remaining for PAN AM 537, reserva-
tions could be made in both partitions. This
would violate correctness: Who should get
the last seat? There should not be more
seats reserved for a flight than physically
exist on the plane. (Some airlines do
not implement this constraint and allow
overbookings.)

The design of a replicated data manage-
ment algorithm tolerating partition failures
is a notoriously hard problem. Typically,
the cause or extent of a partition failure
cannot be discerned by the processors
themselves. At best, a processor may be
able to identify the other processors in its
partition; but, for the processors outside of
its partition, it will not be able to distin-
guish between the case in which those pro-
cessors are simply isolated from it and the
case in which those processors are down.
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In addition, slow responses from certain
processors can cause the network to appear
partitioned even when it is not, further
complicating the design of a fault-tolerant
algorithm.

As far back as 1977, partitioned opera-
tion was identified as one of the important
and challenging open issues in distributed
data management [Rothnie and Goodman
1977]. Since then our understanding of the
problem has increased dramatically, and a
number of diverse solutions have been pro-
posed. In this paper, we survey several of
the more general solutions, and discuss cur-
rent research trends in this still young and
active research area.

Although our discussion is couched
within a database context, most results
have more general applications. In fact, the
only essential notion in many cases is that
of a transaction. Hence these strategies are
immediately applicable to mail systems,
calendar systems, object-oriented systems,
and other applications using transactions
as their underlying model of processing.

The remaining sections of the survey are
organized as follows. Section 1 is a discus-
sion of the principal consideration in
designing a processing strategy for a
partitioned system: the trade-off between
correctness and availability. In Section 2
the notion of correctness in a replicated
database system is discussed, and a taxon-
omy of partition-processing algorithms is
introduced. Sections 3 and 4 are surveys of
the current solutions for transaction pro-
cessing while the system is partitioned, and
extensions and combinations are suggested.
A somewhat different problem is discussed
in Section 5: how to complete transactions
that are in progress at the time of a parti-
tion failure. Guidelines for selecting a par-
tition strategy are presented in Section 6,
along with suggestions for future research.

1. CORRECTNESS VERSUS AVAILABILITY

When designing a system that will operate
when it is partitioned, the competing goals
of availability (the system’s normal func-
tion should be disrupted as little as possi-
ble) and correctness (data must be correct
when recovery is complete) must somehow
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be met. These goals are not independent;
hence trade-offs are involved.

Correctness can be achieved simply by
suspending operation in all but one of the
partition groups and forwarding updates at
recovery; but this severely compromises
availability. In applications in which par-
titions either occur frequently or occur
when access to the data is imperative, this
solution is not acceptable. For example, in
the airline reservation system it may be too
expensive to have a high-connectivity net-
work, and partitions may occasionally oc-
cur. Many transactions are executed each
second (TWA’s centralized reservations
system estimates 170 transactions per sec-
ond at peak time [Gifford and Spector
1984]), and each transaction that is not
executed may represent the loss of a cus-
tomer. In a military command and control
application, a partition can occur because
of an enemy attack, and it is precisely at
this time that we do not want transaction
processing halted.

On the other hand, availability can be
achieved simply by allowing all nodes to
process transactions “as usual” (note that
transactions can only execute if the data
that they reference are accessible). Correct-
ness may now be compromised, however.
Transactions may produce “incorrect” re-
sults (e.g., reserving more seats than phys-
ically available), and the databases in each
group may diverge. In some applications,
such “incorrect” results may be acceptable
in light of the higher availability achieved.
When partitions are reconnected, the
problems may be corrected by executing
transactions missed by a partition, and by
choosing certain transactions to “undo.” If
the chosen transactions have had no real-
world effects, they can be undone by using
standard database recovery methods. If, on
the other hand, they have had real-world
effects, then appropriate compensating
transactions must be run, transactions that
not only restore the values of the changed
database items but also issue real-world
actions to nullify the effects of the chosen
transactions (e.g., by canceling certain res-
ervations and sending messages to affected
users). Alternatively, correcting transac-
tions can be run, transforming the database
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from an incorrect state to a correct state
without undoing the effects of any previous
transactions. For instance, in a banking
application, the correcting transaction for
overdrawing a checking account during a
partitioning would apply an overdraft
charge. Of course, in some applications in-
correct results are either unacceptable or
incorrectable. For example, it may not be
possible to undo or correct a transaction
that effectively hands $1,000,000 to a
customer.

Since it is clearly impossible to satisfy
both goals simultaneously, one or both
must be relaxed to some extent, depending
on the application’s requirements. Relaxing
availability is fairly straightforward; you
simply disallow certain transactions at cer-
tain sites. Relaxing correctness, on the
other hand, usually requires extensive
knowledge about what the information in
the database represents, how applications
manipulate the information, and how much
undoing/correcting/compensating incon-
gistencies will cost. The first step in choos-
ing a partition-processing strategy is to
determine which is more important,
correctness or availability; the second step
is to try to understand the trade-offs be-
tween the two properties for the database
at hand.

2. THE NOTION OF CORRECTNESS

What does correct processing mean in a
database system? Informally, a database is
correct if it correctly describes the external
objects and processes that it is intended to
model. In theory, such a vague notion of
correctness could be formalized by a set of
static constraints on objects and their at-
tributes, and a set of dynamic constraints
on how objects can interact and evolve. In
practice, a complete specification of the
constraints governing even a small data-
base is impractical (besides, even if it were
practical, enforcing the constraints would
not be). Consequently, database systems
use a less ambitious, very general notion of
correctness based on the order of transac-
tion execution and on a small set of static
data constraints known as integrity con-
straints.
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In this section, we examine the notion of
correctness, beginning informaily with ex-
amples illustrating incorrect behavior, fol-
lowed by a more formal definition of
correctness in the traditional database
system. When referring to the state of the
database, we use the terms “correct” and
“consistent” interchangeably.

2.1 Anomalies

Consider a banking database that contains
a checking account and a savings account
for a certain customer, with a copy of each
account stored at both site A and site B.
Suppose that a communication failure iso-
lates the two sites. Figure 1 shows the result
of executing a checking withdrawal at A
(for $100) and two checking withdrawals at
B (totaling $100). Although the resulting
copies of the checking account contain the
same value, we know intuitively that the
actions of the system are incorrect: The
account owner extracted $200 from a
checking account containing only $100.
The anomaly is caused by conflicting write
operations issued in parallel by transac-
tions executing in different partitions.

An interesting aspect of this example is
that in the resulting database all copies are
mutually consistent;® that is, all copies of a
data item contain the same value. Thus,
although it is commonly used as the cor-
rectness criterion for replicated file systems
and information databases, such as tele-
phone directories, mutual consistency is
not a sufficient condition for correctness in
a transaction-oriented database system. It
is also not a necessary condition: Consider
the example in which A executes the $100
withdrawal while B does nothing. Although
the resulting copies of the checking account
contain different values, the resulting da-
tabase is correct if the system recognizes
that the value in A’s copy is the most recent
one.

A different type of anomaly on the same
database is illustrated in Figure 2. This

' This is the narrowest interpretation of several uses
of the term “mutual consistency” that appear in the
literature. Some authors use mutual consistency syn-
onymously with one-copy equivalence (defined in Sec-
tion 2.2).
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SITE A SITEB
Checking: $100 Checking: $100
Savings: $200 Savings: $200

Checking := Checking — $25
Checking :» Checking - $100
Checking := Checking - $75

Checking: $ 0 Checking: $ 0
Savings: $200 Savings: $200
Figure 1. An anomaly resulting from concurrent

write operations on the same data item in separate
partitions.

figure shows the result of executing a
checking withdrawal of $200 at site A, and
a savings withdrawal of $200 at site B.
Here, we assume that the semantics of the
checking withdrawal allow the account to
be overdrawn as long as the overdraft is
covered by funds in the savings account
(i.e., checking + savings = 0). The seman-
tics of the savings withdrawal are similar.
In the execution illustrated, however, these
semantics are violated: $400 is withdrawn,
whereas the accounts together contain only
$300. The anomaly was not caused by con-
flicting writes (none existed since the
transactions updated different accounts),
but instead as a result of the fact that
accounts are allowed to be read in one
partition and updated in another.

Concurrent reads and writes in different
partitions are not the only sources of incon-
sistencies in a partitioned system; more will
be identified shortly. Nor do they always
cause inconsistencies: For example, if the
savings withdrawal in Figure 2 is changed
to a deposit, the intended semantics of the
database would not be violated. However,
the above are typical anomalies that can
occur if conflicting transactions are exe-
cuted in different partitions.

2.2 Database Model

A database is a set of logical data items that
support the basic operations read and write.
The granularity of these items is not im-
portant: They could be records, files, rela-
tions, etc. The state of the database is an
assignment of values to the logical data
iterns. For brevity, logical data items are
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SITE A SITE B
Checking: $100 Checking: $100
Savings: $200 Savings: $200
Figure 2. An anomaly resulting from
concurrent read and write operations in
If checking +savings>$200 If checking +savings>$200 different partitions. pe '
then checking := checking — $200 then savings := savings — $200
Checking: $~100 Checking: $100
Savings: $200 Savings: § 0

subsequently called data items or, more
simply, items.

A transaction is a program that issues
read and write operations on the data items.
In addition, a transaction may have effects
that are external to the database, such as
dispensing money or displaying results on
a user’s terminal. The items read by a
transaction constitute its readset; the items
written constitute its writeset. A read-only
transaction neither issues write requests
nor has external effects. Transactions are
assumed to be correct. More precisely, a
transaction, when executed alone, trans-
forms an initially correct database state into
another correct state [Traiger et al. 1982].

Transactions interact with one another
indirectly by reading and writing the same
data items. Two operations on the same
item are said to conflict if at least one of
them is a write. Conflicts are often labeled
either read-write, write-read, or write-
write, depending on the types of data
operations involved and their order of exe-
cution [Bernstein and Goodman 1981].
Conflicting operations are significant be-
cause their order of execution affects the
final database state.

A generally accepted notion of correct-
ness for a database system is that it exe-
cutes transactions so that they appear to

- users as indivisible, isolated actions on the
database. This property, referred to as
atomic execution, is achieved by guarantee-
ing the following properties:

(1) The execution of each transaction is
an “all or nothing”: Either all of the
transaction’s writes and external oper-
ations are performed or none are
performed. (In the former case the
transaction is said to be committed; in

the latter case it is said to be aborted.)
The property is often referred to as
atomic commitment.

(2) The execution of several transactions
concurrently produces the same data-
base state as some serial execution of
the same transactions. The execution
is then said to be serializable.

The first property is established by the
commit and recovery algorithms of the
database system; the second is established
by the concurrency control algorithm.

Atomic transaction execution (the con-
current execution of transactions is serial-
izable), together with the assumption that
transactions are correct (a transaction ex-
ecuted alone transforms an initially correct
database state into another correct state),
implies by induction that the execution of
any set of transactions transforms an ini-
tially correct database state into a new,
correct state. Although atomic execution is
not always necessary to preserve correct-
ness (as we discuss in Section 4), most real
database systems implement it as their sole
criterion of correctness. This is because
atomic execution is simple (it corresponds
to users’ intuitive model that transactions
are processed sequentially) and can be
enforced by very general mechanisms
that determine the order of conflicting
data operations. These mechanisms are
independent of both the semantics of the
data being stored and the transactions
manipulating it.

Some systems allow additional correct-
ness criteria to be expressed in the form of
integrity constraints. Unlike atomicity,
these are semantic constraints. They may
range from simple constraints (e.g., the
balance of checking accounts must be
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nonnegative) to elaborate constraints that
relate the values of many data items. In
systems enforcing integrity constraints, a
transaction is allowed only if its execution
is atomic and its results satisfy the integrity
constraints. To simplify the discussion,
throughout the rest of the paper, we
assume that integrity constraints are
checked as part of the normal processing of
a transaction.

Notice that we have not specified
whether we were discussing a centralized
or a distributed database system; it has not
been necessary to do so since the defini-
_tions, the properties of transaction process-
ing, and the correctness criteria are the
same in both. Of course, the algorithms for
achieving correct transaction processing
differ markedly between the two types of
implementations. '

In a replicated database, the value of each
logical item x is stored in one or more
physical data items, which are referred to
as the copies of x. Each read and write
operation issued by a transaction on some
logical data item must be mapped by the
database system to corresponding opera-
tions on physical copies. To be correct, the
mapping must ensure that the concurrent
execution of transactions on replicated data
is equivalent to a serial execution on non-
replicated data, a property known as
one-copy serializability. The logic that is
responsible for performing this mapping is
called the replica control algorithm.

As a correctness criterion, one-copy se-
rializability is attractive for the same rea-
sons that (normal) serializability is: It is
intuitive, and it can be enforced using
general-purpose mechanisms that are in-
dependent of the semantics of the database
and of the transactions executed.

The literature on the model and prob-
lems discussed above is extensive. The
transaction concept was first introduced by
Eswaran et al. [1976]. A single-site recovery
algorithm is presented by Gray et al. [1981].
Single-site concurrency control algorithms
are too numerous to list, but three
influential proposals are two-phase locking
[Eswaran et al. 1976), timestamp ordering
[Bernstein and Goodman 1980], and
optimistic concurrency control [Kung and
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Robinson 1981]). The seminal paper on
serializability theory was written by
Papadimitriou [1979]. The enforcement of
integrity constraints is discussed by
Blaustein [1981). The article by Gray
[1978] contains an in-depth treatment of
many issues in the implementation of a
database system.

For nonpartitioned distributed database
systems, concurrency control algorithms
are surveyed by Bernstein and Goodman
(1981] and Kohler [1981]. Atomic commit-
ment protocols are discussed by Gray
[1978], Hammer and Shipman [1980], and
Skeen [1982b). Replica control algorithms
are contained in Gifford [1979], Stone-
braker [1979], and Goodman et al. [1983].
A good discussion of the requirements for
maintaining one-copy serializability in the
presence of failures can be found in Bern-
stein and Goodman [1983].

2.3 Partitioned Operation

Let us now consider transaction processing
in a partitioned network, where the com-
munication connectivity of the system is
broken by failures or by anticipated com-
munication shutdowns. To keep the expo-
sition simple, let us assume that the
network is “cleanly” partitioned (that is,
any two sites in the same partition can
communicate and any two sites in different
partitions cannot communicate) and that
one-copy serializability is the correctness
criterion.

When the system is partitioned, each
partition must determine which transac-
tions it can execute without violating the
correctness criteria. Actually, this can be
thought of as two problems: (1) each par-
tition must maintain correctness within the
part of the database stored at the sites
comprising the partition, and (2) each par-
tition must make sure that its actions do
not conflict with the actions of other par-
titions, so that the database is correct
across all partitions.

If we assume that each site in the net-
work is capable of detecting partition fail-
ures, then correctness within a partition
can be maintained by adapting one of the
standard replica control algorithms for
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nonpartitioned systems. For example, the
sites in a partition can implement a write
operation on a logical object by writing all
copies in the partition. This, along with a
standard concurrency control protocol,
ensures one-copy serializability in the
partition.

The really difficult problem is ensuring
one-copy serializability across partitions.
As illustrated in Figures 1 and 2, the trans-
actions in each partition may be one-copy
serializable, but conflicting operations can
take place in different partitions. Thus it is
not sufficient to run a correct replica con-
trol algorithm in each partition to ensure
that overall transaction execution is one-
copy serializable.

A number of solutions have been pro-
posed for keeping data globally consistent,
and most of the remainder of the survey is
devoted to discussing these solutions. Many
of these solutions are based on the simple
observation that a sufficient (but not nec-
essary) condition for correctness is that no
two partitions execute conflicting data
operations. However, not all partition-
processing solutions use one-copy serializ-
ability as their correctness criterion, nor do
all attempt to maintain correctness across
partitions. We discuss these alternatives in
Section 2.4.

In theory, a partition-processing strategy
is composed of two algorithms: one to en-
sure correctness across partitions and a
replica control algorithm to ensure one-
copy behavior. In practice, many strategies
are composed of a single algorithm that
solves both problems. Most “single” algo-
rithms do not require partitions to be de-
tected and tolerate more than just “clean”
network failures. Such algorithms are at-
tractive for their additional fault tolerance.
In Sections 3 and 4, we present these
“single algorithms,” along with “partition
control” algorithms. In both, however, we
emphasize the partition control aspect.

In addition to solving the problem of
global correctness, a partition-processing
strategy must solve two problems of a dif-
ferent sort. First, when the partitioning
occurs, the database is faced with the prob-
lem of atomically committing ongoing
transactions. The complication is that the
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sites executing the transaction may find
themselves in different partitions, and thus
unable to communicate a decision as to
whether to complete the transaction (com-
mit) or to undo it (abort). Note that the
problem of atomic commitment in multiple
partitions does not arise for a transaction
submitted after the partitioning occurs
(such a transaction will be executed in only
one partition) and that this problem arises
in any partitioned database system whether
it is replicated or not.

Second, when partitions are reconnected,
mutual consistency® between copies in dif-
ferent partitions must be reestablished.
That is, the updates made to a logical data
object in one partition must be propagated
to its copies in the other partitions. Con-
ceptually, this problem can be solved in a
straightforward manner by extra bookkeep-
ing whenever the system partitions. For
example, each update applied in a partition
can be logged, and this log can be sent to
other partitions upon reconnection. (Such
a log may be integrated with the “recovery
log” that is already kept by many systems.)
In practice, an efficient solution to this
problem is likely to be intricate and very
dependent on the normal recovery mecha-
nisms employed in the database system.
For this reason, we do not discuss it further.

2.4 Classification of Strategies

Partition-processing strategies can be clas-
sified along two orthogonal dimensions.
The first dimension concerns the trade-off
between consistency and availability; the
two extremes are pessimistic and optimistic.
The second dimension concerns the type of
information used in determining correct-
ness; the two extremes are syntactic and
semantic. Thus a strategy can be loosely
classified as either pessimistic-syntactic,
optimistic-syntactic, pessimistic-seman-
tic, or optimistic-semantic.

Pessimistic strategies prevent inconsist-
encies by limiting availability. Each parti-
tion makes worst-case assumptions about
what other partitions. are doing, and

2 As before, by “mutual consistency” we mean that the
copies contain the same value.
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operates under the pessimistic assumption
that if an inconsistency can occur, it will
occur. These strategies differ primarily in
the policy they use to restrict transaction
processing. Since they ensure consistency,
it is straightforward to merge the results of
individual partitions; updates are merely
propagated from copies in one partition to
their counterparts in the other partitions
at reconnection time,

At the other extreme, optimistic strate-
gles do not limit availability. Any transac-
tion may be executed in any partition that
contains copies of the items read and writ-
ten by the transaction. Hence, although
transaction processing within each parti-
tion is consistent, and no user staying
within a single partition would detect an
inconsistency, global inconsistencies may
be introduced. These strategies operate un-
der the optimistic assumption that incon-
sistencies, even if possible, rarely occur. At
reconnection time, the system must first
detect inconsistencies and then resolve
them.

Optimistic strategies differ primarily in
how they detect and resolve inconsisten-
cies. In Section 1 we discussed several
ways of resolving conflicts. These include
undoing a set of the transactions that have
generated no significant external actions,
running compensating transactions to nul-
lify the effects of transactions generating
external actions, and running corrective
transactions that transform the database
to a “correct,” but not necessarily serializ-
able, state. Obviously, the latter approach
requires finding a suitable correctness cri-
terion in lieu of one-copy serializability.

Syntactic approaches use one-copy seri-
alizability as their sole correctness criterion
and check serializability by examining
readsets and writesets of the executed
transactions. Hence neither the semantics
of the transactions (i.e., how the items read
are used to generate the result) nor the
semantics of the data items themselves are
used in ascertaining correctness. Syntactic
approaches are implemented using general-
purpose concurrency control algorithms
such as two-phase locking [Eswaran et al.
1976].

At the other extreme, semantic ap-
proaches use either the semantics of the
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transactions or the semantics of the data-
base in defining correctness. Although this
is somewhat of a “catchall” category, there
are two discernible subcategories. The first
uses serializability as the correctness cri-
terion but also uses the semantics of the
transactions to test serializability. The sec-
ond abandons serializability altogether and
defines correctness in terms of the contents
of the database itself; the correctness cri-
terion is intended to capture the semantics
of the data stored in the database. Such
semantic constraints fall outside of the tra-
ditional model of transaction processing.

3. SYNTACTIC APPROACHES

All approaches in this section use serial-
izability as the correctness criterion and
check serializability by comparing trans-
actions’ readsets and writesets. We assume
that a correct concurrency-control mecha-
nism coordinates transaction execution
within a partition; hence transaction exe-
cution within a partition is serializable.

We also assume that, at the time of the
partitioning, all copies are mutually consis-
tent and there are no in-progress transac-
tions. Note that this assumption is not
realistic and is made to simplify the presen-
tation. In general, copies of data items may
not be consistent at partition time because
some have processed updates of a commit-
ted transaction whereas others have not.
How the system resolves these “blocked”
transactions is discussed in Section 5,
which deals with atomic commitment.
Transactions at earlier stages of processing
can be aborted and rerun in the partition
containing their site of origin.

3.1 Optimistic Strategies
3.1.1 Version Vectors [Parker et al. 1983]

Version vectors were proposed for use in
the distributed operating system LOCUS
to detect write-write conflicts between cop-
ies of files {Popek et al. 1981). Each copy
of a file f has a version vector associated
with it that counts the number of updates
of f originating at each site at which f is
stored. The vector consists of a sequence of
n pairs, where n is the number of sites at
which f is stored; the ith vector entry
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/A BC <A0, B:0, C:0>
<A2,B:0,C:0> AB C <A, B:0, C:0>
A updates f twice. I \
<A}, B:0,C:O> A C <A:2, B0, Cl>

B
/ C updates f once.
C

CONFLICT: 352, 0«0, but O<1.
Manual assistance required.

(S; : v;) counts the number of updates
to f, v;, originating at site Si. Conflicts that
occur when more than one partition up-
dates the file can be detected by comparing
version vectors.

Vector v is said to dominate vector v” if
v and v’ are version vectors for the same
fileand v; = v fori=1,..., n. Intuitively,
if v dominates v’, the copy with vector v
has seen a superset of the updates seen by
the copy with vector v’'. Two vectors are
said to conflict if neither dominates. In this
case, the copies have seen different updates.
For example, (A:3, B:4, C:2) since
3>2 4>1and2=2 but (A:3, B:1,
C:2) and (A:2, B:4, C:2) conflict since
3>2butl<4.

When two sites discover that their ver-
sion vectors for f conflict, an inconsistency
has been detected. How to resolve the in-
consistency is left up to the database ad-
ministrator (DBA).

Example. Consider the partition graph
for file f shown in Figure 3. Sites A, B, and
C initially have the same version of f. The
system then partitions into groups AB and
C, and A updates f twice. Hence both A and
B have version vectors of (A:2, B:0, C:0),
while C is (A:0, B:0, C:0). Site B then
splits off from site A and joins site C. Since
C did not update f and B has the current
version, there is no conflict ((A:2, B:0,
C:0) dominates (A:0, B:0, C:0)), and B’s
version (and vector) is adopted for the new
group BCE. During this new partition fail-
ure, A updates its version of f once, making
group A’s version vector (A: 3, B:0, C:0),
and C updates its version of f once, making
group BC's version vectors (A:2, B:0,
C:1). When groups A and BC now com-

NO CONFLICT: B's version adopted.
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Figure 3. Conflict on file f de-
tected by incomparable version
vectors.

bine, there is a conflict and neither of (4:2,
B:0, C:1) or (A:3, B:0, C:0) dominates
the other.

Version vectors detect write-write con-
flicts only. Read-write conflicts cannot
be detected because the files read by a
transaction are not recorded. Hence the
approach works well for transactions ac-
cessing a single file, which are typical in
many file systems, but not for multifile
transactions, which are common in data-
base systems. :

Example. Consider applying version vec-
tors to the banking example of Figure 1,
where communication between sites A and
B fails, as shown in Figure 4. During the
failure, the transaction executed at A up-
dates the checking balance based on the
value of the savings balance; the transac-
tion executed at B updates the savings bal-
ance based on the value of the checking
balance. No conflict will be detected, even
though the above is clearly not serializable.

To extend the version vectors algorithm
so that read-write conflicts are detectable,
reads and writes of transactions must be
logged. This leads to an algorithm very
similar to the Optimistic Protocol pre-
sented next.’

3.1.2 The Optimistic Protocol [Davidson 1982,
1984]

The Optimistic Protocol uses a precedence
graph to detect inconsistencies. A prece-
dence graph models the necessary ordering

3 Historical note. Such an extension was proposed by
Parker and Ramos [1982]. Their conflict detection
algorithm, however, is incorrect: It does not detect all
inconsistencies and falsely detects inconsistencies.
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checking balance
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AB <A:0, B:0>

<A:l, B:0> A /B <A:0, B:0>
AB
NO CONFLICT detected
A's version adopted.
<A:l, B:0>

<A:0, B:0> A

savings balance
AB_ <A, B:0>
B <A, B:1>
AB
NO CONFLICT detected

B’s version adopted.
<A:0, B:1>

Figure 4. Incorrect conflict detection using version vectors with multifile

transactions.

between transactions, and is used to check
serializability across partitions. The prece-
dence graphs are adapted from serialization
graphs, which are used to check serializa-
bility within a site [Papadimitriou 1979}.
In the following we assume that the readset
of a transaction contains its writeset. (The
reason for this assumption is to avoid cer-
tain NP-complete problems in checking
serializability.)

In order to construct the precedence
graph, each partition maintains a log,
which records the order of reads and writes
on the data items. From this log, the read-
sets and writesets of the transactions and
a serialization order on the transactions
can be deduced. (A serialization order exists
since, by assumption, transaction execu-
tion within a partition is serializable.) For
partition i, let Ty, Ti2, ..., Tin be the
set of transactions, in serialization order,
executed in i. '

The nodes of the precedence graph rep-
resent transactions; the edges represent
interactions between transactions. The
first step in the construction of the graph
is to model interactions between transac-
tions in the same partition. Two types of
edges (interactions) are identified:

(a) (Data) Dependency Edges* (Ti --»
T.). These edges represent the fact
that one transaction T read a value
produced by another transaction T}; in
the same partition (WRITESET(T;) N
READSET(Tu) # D, j <Rk).

(b) Precedence Edges (T;; — Tu). These
edges represent the fact that one trans-

4 Dependency edges are also called ripple edges [Dav-
idson 1982, 1984].
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action T; read a value that was later
changed by another transaction T, in
the same partition (READSET(T;;) N
WRITESET(T) # 9, j < k).

A dependency edge from T}; to Ti indicates
that the output of T;; influenced the exe-
cution of Ta; hence the “existence” of T
depends on the “existence” of T;. The
meaning of a precedence edge T;; from Ti
is more subtle: T does not influence T;;
only because T;; executed before it. In this
case the “existence” of T does not depend
on the existence of T;. In both cases, an
edge from T;; to T indicates that the order
of execution of the two transactions is re-
flected in the resulting database state. Note
that the graph constructed thus far must
be acyclic since the orientation of an edge
is always consistent with the serialization
order.

To complete the precedence graph, con-
flicts between transactions in different par-
titions must be represented. A new type of
edge is defined for this purpose:

(c) Interference Edges (T;; — Tu, i # ).
These edges indicate that T;; read an
item that is written by Ty in another
partition (READSET(T;;) N WRITE-
SET(Tw) # D).

The meaning of an interference edge is the
same as a precedence edge: An interference
edge from T; to T indicates that T}; logi-
cally “executed before” T}, since it did not
read the value written by Ti. An interfer-
ence edge signals a read-write conflict be-
tween the two transactions. (A write-write
conflict manifests as a pair of read-write
conflicts since each transaction’s readset
contains its writeset.)
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Figure 5. Conflict between transactions executed in
different partitions detected by cycle in precedence
graph.

Example. Suppose that the serial history
of transactions executed in P, is { T, Ti2,
Tm’, and that of P2 is ‘T-n , T'-zzl. The
precedence graph for this execution is given
in Figure 5, where the readset of a trans-
action is given above the line and the
writeset below the line. (Thus, transaction
T)2 reads b, ¢ and writes c.)

Intuitively, cycles in the precedence
graph are bad: If T and T’ are in a cycle,
then the database reflects the results of T
executing before T’ and of T’ executing
before T—a contradiction. Conversely, the
absence of cycles is good: The precedence
graph for a set of partitions is acyclic if and
only if the resulting database state is consis-
tent [Davidson 1984]. An acyclic prece-
derice graph indicates that the transactions
from both groups can be presented by a
single serial history, and the last updated
copy of each data item is the correct value.
A serialization order for the transactions
can be obtained by topologically sorting the
precedence graph.

Inconsistencies are resolved by rolling
back (undoing) transactions until the re-
sulting subgraph is acyclic. When a trans-
action is rolled back, transactions con-
nected to it by dependency edges must also
be rolled back, since these transactions read
the values produced by the selected trans-
action. Hence rolling back one transaction
may precipitate the rolling back of many, a
problem known as cascading rollbacks.
Transactions connected to a rolled-back
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transaction by precedence edges are not
rolled back since they did not read the
results of the rolled-back transaction. In
the above example, if T\, is selected, then
T,, and T;; must also be selected. Simply
selecting Tis, Ta, or Ty, however, also
breaks the cycle and involves only one
transaction. Note that transactions must
be rolled back in reverse order of execution;
that is, within each partition, the value of
a data item that is updated by one or more
rolled-back transactions from that group
will be restored to the value read by the
earliest rolled-back transaction. To merge
the partitioned databases, the final value
of each updated data item in each partition
group can simply be forwarded to the other
group (a data item cannot be updated by
both groups after transactions have been
rolled back, since the resulting precedence
graph is acyclic).

Note that the notion of “committing” a
transaction has been somewhat violated. A
transaction 7T is “committed” during a fail-
ure subject to confirmation at recovery. If
all actions performed by T are recoverable,
rolling back is not a problem; one merely
replaces the values updated by T with the
values read by T. However, some unrecov-
erable actions may also have been per-
formed. For example, an automatic teller
may have handed money to a customer,
results may have been reported to a user,
or a missile may have been fired. Some
such actions may be compensated for; that
is, there could be some 7’ that can be
executed to nullify the effect of T. For
example, the bank could charge the account
of the customer who accidentally received
cash from the automatic teller, or the re-
porting procedure could inform the user
that the reported results were inaccurate
due to system failure (it is hoped that the -
user would have been made aware of this
possibility from the start). Other actions—
such as the firing of a missile—may have
no compensation. Such actions should not
be permitted during failure since there can
be no guarantee that the transaction will
not be rolled back.

The algorithm used to select which trans-
actions to roll back should strive to mini-
mize some cost function, for example, the
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number of rolled-back transactions, or the
sum of the weights of the rolled-back trans-
actions (where the assignment of weights
can be application dependent). Unfortu-
nately, minimizing either the number of
transactions or the sum of their weights is
an NP-complete problem [Davidson 1984];
hence heuristics must be used.

The most promising heuristics use the
following observation: Breaking all two-
cycles in a precedence graph tends to break
‘almost all cycles. A two-cycle is a cycle
consisting of two transactions connected
by a pair of interference edges in opposite
directions. These cycles tend to represent
write-write conflicts on data items. Two-
cycles can be broken optimally by using an
algorithm requiring time O(N**'), where N
is the number of transactions [Davidson
1982]. After the two-cycles have been bro-
ken, the few remaining cycles can be broken
by a greedy algorithm, one that repetitively
selects the lowest-weight transaction in-
volved in a cycle. Simulation studies have
shown that such heuristics work very well,
outperforming all other strategies tested
(Davidson 1984].

The performance of the Optimistic Pro-
tocol is studied by Davidson [1982]. A prob-
abilistic model is developed that yields a
formula for estimating rollback rate given
the number of transactions, a model of the
average transaction, and the size of the
database. Simulation results in the same
paper yield additional insight into rollback
rates. These studies indicate that the Op-
timistic Protocol performs best when

(1) asmall percentage of items are updated
during the partitioning, and
(2) few transactions have large writesets.

Whenever (1) holds, the probability that a
given transaction will be rolled back de-
pends more on the size of its writeset than
its readset. Concerning (2), not only is the
occasional large transaction more likely to
conflict with another transaction, but in

addition its rollback is likely to cause other -

rollbacks. Consequently, the rollback rate
is quite sensitive to variance in transaction
size.
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3.2 Pessimistic Strategies

The first group of pessimistic strategies,
primary site (copy), tokens, and voting,
were initially proposed as distributed con-
currency-control mechanisms. However,
they can also be used to prevent conflicts
between transactions when the network
partitions. Missing writes is an adaptive
voting strategy that improves performance
when there are no failures in the system.
Accessible copies is an adaptation of a
“read-one/write-all” protocol. The last
strategy, designed specifically for parti-
tioned networks, strives to increase avail-
ability by exploiting known characteristics
of the work load.

3.2.1 Primary Site, Copy [Alsberg and Day
1976; Stonebraker 1979] :

Originally presented as a resilient tech-
nigue for sharing distributed resources, this
approach suggests that one copy of an item
be designated the primary copy, and as such
be responsible for that item’s activity. All
reads for a data item must be performed at
the primary site for that data item.® Up-
dates are propagated to all copies. In the
case of a partition failure, only the partition
containing the primary copy can access the
data item. Updates are simply forwarded at
recovery to regain consistency.

This approach works well only if site
failures are distinguishable from network
failures. If this is the case and the primary
site for a data item fails, a new primary can
be elected (for a discussion of election pro-
tocols, see Garcia [1982]). However, if it is
uncertain whether the primary failed or the
network failed, the assumption must be
that the network failed and no new primary
can be elected.

3.2.2 Tokens.[Minoura and Wiederhold 1982)

This approach is very similar to that above
except that the primary copy of an item
can change for reasons other than site fail-
ure. Each item has a token associated with

$ Normally only the lock for a data item must be
acquired at the primary site: The actual read may be
performed on any copy once the lock has been granted.
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it, permitting the bearer to access the item.
In the event of a network partition, only
the group containing the token will be able
to access the item.

The major weakness with this scheme
is that accessibility is lost if the token is
lost as a result of site or communication
medium failure.

3.2.3 Voting [Gifford 1979]

The first voting approach was the majority
consensus algorithm [Thomas 1979]. What
we now describe is the generalization of
that algorithm proposed by Gifford [1979).
In this approach, every copy of a repli-
cated item is assigned some number of
votes. Every transaction must collect a read
quorum of r votes to read an item, and a
write quorum of w votes to write an item.
Quorums must satisfy two constraints:

(1) r+ w exceeds the total number of votes
v assigned to the item, and
(2) w>v/2

The first constraint ensures that there is
a nonnull intersection between every read
quorum and every write quorum. Any read
quorum is therefore guaranteed to have a
current copy of the item. (Version numbers
are used to identify the most recent copy.)
In a partitioned system, this constraint
guarantees that an item cannot be read in
one partition and written in another. Hence
read-write conflicts cannot occur between
partitions.

The second constraint ensures that two
writes cannot happen in parallel or, if the
system is partitioned, that writes cannot
occur in two different partitions on the
same data item. Hence write-write con-
flicts cannot occur between partitions.

Example. Suppose that sites S;, S, and
S, all contain copies of items f and g, and
that a partition P, occurs, isolating S, and
S, from S, as shown in Figure 6a. Initially,
f = g = 0, each site has 1 vote for each of f
and g, and r = w = 2 for both f and g.
During the partitioning, transaction T,
wishes to update g on the basis of values
read for f and g. Although it cannot be
executed at S; since it cannot obtain a read
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Figure 6. Correct transaction processing during par-
titioning using voting.

quorum for f, or read and write quorums
for g, it can be executed at S;, and the new
value g = 1 is propagated to Sz.

Now suppose that P, is repaired, and a
new failure P; isolates S, and S; from S,
as shown in Figure 6b. During this new
failure, transaction T, wishes to update f
on the basis of values read for f and g. It
cannot be executed at S, since it cannot
obtain a read quorum for g, or read and
write quorums for f. It can be executed at
S, however. Using the most recent copy of
g = 1 (obtained by reading copies at both
S, and S; and taking the latest version) T;
computes the new value f =1 and propa-
gates the new value to S,.

Notice that the above example reduces
to a majority vote since each copy has ex-
actly one vote and r and w are a simple
majority [Thomas 1979].

Varying the weight of a vote can be used
to reflect the needed accessibility level
of an item. For example, in a banking
application, a customer may use certain
branches more frequently than other
branches. Suppose that there are 5
branches of the bank and the customer uses
branches 1, 2, and 3 with equal frequency,
but never goes to branches 4 or 5. Assigning
r = w = 2 and the customer’s account at
branches 1, 2, and 3 a vote of 1 but 0
elsewhere would reflect this usage pattern.

The quorum algorithm differs from those
previously discussed in two important
ways. First, by choosing r < v/2, it is pos-
sible for an item to be read accessible in
more than one partition, in which case it
will be write accessible in none. Read ac-
cessibility can be given a high priority by
choosing r small. Second, the algorithm
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does not distinguish among communication
failures, site failures, or just slow response.
A serious weakness of the previous schemes
is that availability is severely compromised
if a distinction cannot be made.

A weakness of the quorum scheme is that
reading an item is fairly expensive. A read
quorum of copies must be read in this
scheme, whereas a single copy suffices for
- all other schemes.

3.2.4 Missing Writes [Eager and Sevcik 1983]

Eager and Sevcik’s algorithm is based on
the observation that while requiring a quo-
rum for items in the readset as well as for
those in the writeset is a sufficient restric-
tion to guarantee correct or serializable ex-
ecution during partition failures, it is not
necessary when there are no failures [Bern-
stein and Goodman 1983; Eager and Sevcik
1983). Requiring a readset quorum signifi-
cantly degrades performance when there
are no failures, but is necessary to guaran-
tee correctness when there are failures.
Thus transactions run in two modes, nor-
mal and failure. When in normal mode,
transaction T reads one copy of each data
item in its readset and updates all copies in
its writeset. If some copy cannot be up-
dated, T becomes “aware” of a missing up-
date, and must run in failure mode. Failure
mode is very similar to the majority con-
sensus algorithm alluded to above: Quo-
rums must now be obtained for each data
item in the readset and writeset.® This
“missing update information” is then
passed along to all following transactions
that need the information, that is, all trans-
actions connected to T by a path of de-
pendency and precedence edges originating
at T. These transactions also become aware
of missing updates, and must run in failure
mode. Since T cannot see the future and
does not know what later transactions will
be affected, a level of indirection is used:
Missing update information is posted at
sites, along with a description of what

®A quorum can essentially be thought of as the
“w > /2" from Condition 2 in Section 3.2.3; it is a set
of (possibly weighted) votes from sites containing
copies of the data item such that any two quorums for
that data item intersect.
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transactions need the information. When
the failure is repaired, the missing update
information will eventually be posted at the
sites that “caused” the missing updates,
that is, those that did not receive the up-
dates. The updates then can be applied,
and postings removed from other sites
throughout the system.

The algorithm hinges on the ability to
recognize “missing writes” and to propagate
the information to later transactions so
that cycles in the precedence graph of com-
mitted transactions are avoided. Note,
however, that certain transactions may be
able to execute without restriction even if
there are partition failures present in the
system; there is no harm in allowing read-
only transactions to “run in the past” dur-
ing a failure, that is, to read an old value of
a data item, as long as no cycles result in
the precedence graph of committed trans-
actions. This ability to run in the past
allows a site that has become isolated from
the rest of the network to execute read-only
transactions even if updates are being per-
formed on remote copies of the data items
stored at that site.

Example. Suppose that there are four
sites in the system S,, S;, Si, and S,. Sites
S, S., and S; contain copies of data item
a; site S,, S3, and S, contain copies of data
item b. Now suppose that a failure occurs,
isolating sites S, and S; from sites S; and
S,; transactions Ty, T,, T are initiated at
site S, (in that order), while transaction T,
is initiated at S,. The readsets, writesets,
and precedence graph are depicted in Fig-
ure 7. (The precedence graph shown is of
uncommitted transactions since cycles in
the precedence graph of committed trans-
actions will obviously be avoided.)

T\ is unaware of the failure, since it can
obtain a copy of a and b at S, ; it can happily
run in the past. T, becomes aware of the
failure when it is unsuccessful at updating
the copy of a at S;; it is allowed to commit,
however, since it can receive a quorum for
each data item in its readset and writeset
(assuming that each copy has a weight of
1). T, is then required to pass all of its
missing update information to transactions
that are incoming nodes for outgoing edges
from T., such as T; in this example. If T;
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Figure 7. Potential conflict between transactions in

different partitions is avoided by requiring transac-
tions aware of missing updates to collect read and
write quorums.

were to successfully commit, it would also
be required to pass on the missing update
information. In this example, however, T3
is not allowed to commit; since it is aware
of missing updates, it is required to obtain
a quorum for data items in its readset,
which it cannot for b. Transaction T would
also not be allowed to commit since al-
though it can obtain a quorum for b, it finds
that it cannot update the copy of b at S.,
and must then run in failure mode. Since
it cannot obtain a quorum for g, it cannot
complete successfully. Thus in this example
(as well in all others), there are no cycles
in the precedence graph of committed trans-
actions. Note that the restriction that T,
and T, be rerun in failure mode is neces-
sary. Suppose that T; and T, both read a
and b, but T, updated a while T, updated
b. If they both executed in normal mode
and did not switch to failure mode when
they become aware of missing updates, a
cycle would result in the precedence graph
of committed transactions.

In order to implement this method, re-
gardless of the concurrency-control mech-
anism being used, several files must be kept
at each site. They include

(a) a file for posted missing updates, with
indications of which transactions need
to be informed about the missing up-
dates;
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(b) a file containing the values of missing
updates, to be applied to the appropri-
ate copies when recovery occurs;

a file indicating the transaction re-
starts, aborts, or commits of which the
site is aware, used to resolve the
“plocked” transactions alluded to in the
introduction to Section 3;

(d) a record of the missing updates that

have been applied at the site.

(c)

Although these files can grow very rapidly
if the system is active during failures, they
must only be maintained when failures are
present in the system, and thus do not
impact performance in the absence of fail-
ures. Furthermore, since quorums are only
required when a transaction is aware of a
missing update, when there are no failures -
or the transaction is not required to know
about the failure, reading an item incurs no
additional overhead. The method is also
very flexible: It requires no “detection” of
failure other than the inability to perform
updates, and no special “global” action or-
temporary cessation of activity to propa-
gate updates when the failure is repaired.

3.2.5 Accessible Copies Algorithm {El Abbadi
et al. 1985]

The Accessible Copies algorithm is based
on the following intuitive, “read-one/write-
all” protocol:

(1) A data item can be read and written
within a partition only if a majority of
its copies reside on member sites of the
partition. In this case, the item is said
to be accessible.

A read operation on an accessible data
item is implemented by reading the
nearest copy of the item residing on a
member of the partition.

A write operation on an accessible
data item is implemented by writing
all copies residing on members of the
partition.

(2)

3

The first rule of the protocol ensures that
only one partition may -access a given data
item. The second and third rules ensure
that the copies of a data item remain con-
sistent within a partition.
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The above protocol is appealing because
it is simple and because it implements the
read operation inexpensively. The protocol
ensures one-copy serializability in an
“ideal” network, where partition failures
are “clean” and sites detect partition fail-
ures almost instantaneously. Unfortu-
nately, if either property of the ideal
network is violated, which sometimes hap-
pens in any real system, incorrect execu-
tions can occur.

The principal idea in the Accessible Cop-
ies algorithm is the implementation of an
abstract communication layer on top of the
real communication network, where the be-
havior of the new layer approximates that
of the “ideal” network. A variant of the
above read-one/write-all protocol can then
be implemented on top of the abstract
communication layer.

The abstract communication layer cre-
ates and manipulates virtual partitions,
which are rough analogs of the actual par-
titions that occur in the real network. A
virtual partition has three important attri-
butes. The first is its creation time, which
is the logical clock time of its creation
[Lamport 1978). The second is its set of
potential members, which is the set of sites
‘that are allowed to join the partition. The
third is its set of actual members. The first
two attributes are static, and are known to
each member of a virtual partition. The
third attribute is dynamic, and generally
will not be known with certainty by any
site in the virtual partition.

One important difference between real
and virtual partitions is that virtual parti-
tions are created explicitly according to a
well-defined protocol. Loosely speaking,
the steps of the creation protocol are as
follows. First, a group of sites depart from
their current virtual partitions. (A site can
depart from its current virtual partition
unilaterally by setting a local variable.)
Second, the group of sites collectively de-
termine the creation time and the potential
members of the new virtual partition. The
creation time must be larger than any pre-
vious creation time, and the set of potential
members can include only those sites par-
ticipating in the creation protocol. Last, the
sites in the group asynchronously become
actual members of the new virtual partition
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(be setting an appropriate variable). It
should be remarked that the creation pro-
tocol given by El Abbadi et al. [1985]
tolerates additional partition failures
occurring during its execution.

Given a correct implementation of the
abstract communication layer, a variant of
the simple read-one/write-all protocol can
be used to control access to data items. The
variant protocol is obtained by substituting
the phrase “potential member(s)” of the
virtual partition for all occurrences of the
phrase “member(s) of the partition” in the
original protocol. The resulting protocol
provides one-copy serializability when used
in conjunction with an appropriate failure
recovery protocol.

3.2.6 Class Conflict Analysis [Skeen and
Wright 1984; Wright 1983]

The pessimistic strategies discussed thus
far strive to make each data record avail-
able for reading and writing in some
partition by arbitrary transactions. These
strategies, then, emphasize the general
availability of individual records. An alter-
nate strategy, class conflict analysis, strives
to ensure the capability of performing im-
portant high-level operations on the data.
Hence this strategy emphasizes the availa-
bility of high-level data operations, possibly
at the expense of the general availability of
records.

To illustrate the difference between the
two approaches, consider again the banking
example shown in Figure 2, where a cus-
tomer can overdraw his or her checking
account as long as the overdraft is covered
by funds in his or her savings account. If
the system partitions, none of the discussed
pessimistic strategies would allow a check-
ing withdrawal (which requires reading the
balance of both accounts) to occur in one
partition and allow a savings deposit to
occur in another partition. However, exe-
cuting these transactions in parallel in
different partitions violates neither the
bank’s policy nor the one-copy serializ-
ability. Hence these transactions should
be allowed.

The class conflict analysis approach as-
sumes that transactions are divided into
classes as proposed in SDD-1 [Bernstein et



al. 1980]. A class may be a well-defined
transaction type, such as the “savings with-
drawal,” or it may be syntactically defined,
for example, the class containing all trans-
actions reading and writing a subset of
items a, b, and c.

Like transactions, classes are character-
ized by their readsets and writesets. The
readset of a class is the union of the read-
sets of all of its member transactions; sim-
ilarly, the writeset of a class is the union of
the writesets of all its member transactions.
As before, it is assumed that a class’s read-
set contains its writeset, so that NP-com-
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plete problems are avoided. Two classes
conflict if one’s readset intersects the oth-
er's writeset. A class conflict indicates a
potential read-write conflict between mem-
ber transactions of the classes. (A conflict
may not actually occur because the trans-
actions’ readsets and writesets may be
proper subsets of the classes’ readsets and
writesets.)

W