Practice 11

Ross Tate
May 1, 2020

Definition (Multilinear Map). A multilinear map from a list of commutative monoids $\left\langle A_{1}, 0_{1},+{ }_{1}\right\rangle, \ldots,\left\langle A_{n}, 0_{n},+_{n}\right.$ to a commutative monoid $\langle B, 0,+\rangle$ is a n-ary function $f: A_{1} \times \cdots \times A_{n} \rightarrow B$ satisfying the following properties for any index $i \in\{1, \ldots, n\}$ and elements $a_{1} \in A_{1}, \ldots, a_{i-1} \in A_{i-1}, a_{i+1} \in A_{i+1}, \ldots, a_{n} \in A_{n}$:
$f\left(a_{1}, \ldots, 0_{i}, \ldots, a_{n}\right)=0 \quad$ and $\quad \forall a_{i}, a_{i}^{\prime} \in A_{i} . f\left(a_{1}, \ldots, a_{i}+{ }_{i} a_{i}^{\prime}, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)+f\left(a_{i}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right)$
That is, a multilinear map is an n-ary function such that, for every index i, fixing all the inputs besides the input for i results in a monoid homomorphism from $\left\langle A_{i}, 0_{i},+_{i}\right\rangle$ to $\langle B, 0,+\rangle$. In particular, a unary multilinear map is simply a monoid homomorphism, and a nullary multilinear is simply a nullary function (i.e. an element of the codomain).

Exercise 1. Prove that CommMon, comprised of commutative monoids and multilinear maps with identities and composition inherited from Set, is a multicategory. In particular, demonstrate why the monoids must be commutative.

Exercise 2. Show that the internal monoids of CommMon bijectively correspond with semirings (defined in the previous homework).

Definition (Unit). An object I with a multimorphism unit : [] $\rightarrow I$ is called a unit object with a unit multimorphism if they form a tensor of the empty list. A multicategory has a unit if it has such an object and multimorphism.

Exercise 3. Prove that $\langle\mathbb{N}, 0,+\rangle$ is a unit object of CommMon. However, rather than showing the existence and uniqueness of split $\vec{A} ; \varnothing ; \vec{B} f$ for arbitray lists of commutative monoids \vec{A} and \vec{B}, for the sake of readability show this only for the case where \vec{A} is a singleton list and \vec{B} is empty.

Exercise 4. Prove that, for any given commutative monoids $\langle A, 1, *\rangle$ and $\langle B, 1, *\rangle$, the set of monoid homomorphisms from $\langle A, 1, *\rangle$ to $\langle B, 1, *\rangle$ is the underlying set of the left-exponential object $\langle A, 1, *\rangle \multimap\langle B, 1, *\rangle$ in CommMon. However, for the existence and uniqueness proof of λf, for the sake of readability only show this for the case where f is binary.

Exercise 5. Prove that, in CommMon, the underlying set of the tensor of $\langle A, 0,+\rangle$ and $\langle B, 0,+\rangle$ is the set $\mathbb{M}(A \times B) / \approx$, where \approx is the least equivalence relation satisfying:

$$
\begin{gathered}
{[\langle 0, b\rangle] \approx[] \quad\left[\left\langle a+a^{\prime}, b\right\rangle\right] \approx\left[\langle a, b\rangle,\left\langle a^{\prime}, b\right\rangle\right] \quad[\langle a, 0\rangle] \approx[] \quad\left[\left\langle a, b+b^{\prime}\right\rangle\right] \approx\left[\langle a, b\rangle,\left\langle a, b^{\prime}\right\rangle\right]} \\
\ell_{1} \approx \ell_{1}^{\prime} \wedge \ell_{2} \approx \ell_{2}^{\prime} \Longrightarrow \ell_{1}+\ell_{2} \approx \ell_{1}^{\prime}+\ell_{2}^{\prime}
\end{gathered} \quad\left(\ell+\ell^{\prime} \approx \ell^{\prime}+\ell\right)
$$

Exercise 6. Prove that a unit of a cartesian multicategory is also a terminal object.

