Practice 11

Ross Tate

May 1, 2020

Definition (Multilinear Map). A multilinear map from a list of commutative monoids $\langle A_1, 0_1, +_1 \rangle, \ldots, \langle A_n, 0_n, +_n \rangle$ to a commutative monoid $\langle B, 0, + \rangle$ is a *n*-ary function $f : A_1 \times \cdots \times A_n \to B$ satisfying the following properties for any index $i \in \{1, \ldots, n\}$ and elements $a_1 \in A_1, \ldots, a_{i-1} \in A_{i-1}, a_{i+1} \in A_{i+1}, \ldots, a_n \in A_n$:

 $f(a_1,\ldots,0_i,\ldots,a_n) = 0 \quad \text{and} \quad \forall a_i, a_i' \in A_i. \ f(a_1,\ldots,a_i+a_i',\ldots,a_n) = f(a_1,\ldots,a_i,\ldots,a_n) + f(a_i,\ldots,a_i',\ldots,a_n)$

That is, a multilinear map is an *n*-ary function such that, for every index *i*, fixing all the inputs besides the input for *i* results in a monoid homomorphism from $\langle A_i, 0_i, +_i \rangle$ to $\langle B, 0, + \rangle$. In particular, a unary multilinear map is simply a monoid homomorphism, and a nullary multilinear is simply a nullary function (i.e. an element of the codomain).

Exercise 1. Prove that **CommMon**, comprised of commutative monoids and multilinear maps with identities and composition inherited from **Set**, is a multicategory. In particular, demonstrate why the monoids must be commutative.

Exercise 2. Show that the internal monoids of **CommMon** bijectively correspond with semirings (defined in the previous homework).

Definition (Unit). An object I with a multimorphism unit : [] $\rightarrow I$ is called a unit object with a unit multimorphism if they form a tensor of the empty list. A multicategory has a unit if it has such an object and multimorphism.

Exercise 3. Prove that $\langle \mathbb{N}, 0, + \rangle$ is a unit object of **CommMon**. However, rather than showing the existence and uniqueness of $\operatorname{split}_{\vec{A}; \emptyset; \vec{B}} f$ for arbitral lists of commutative monoids \vec{A} and \vec{B} , for the sake of readability show this only for the case where \vec{A} is a singleton list and \vec{B} is empty.

Exercise 4. Prove that, for any given commutative monoids $\langle A, 1, * \rangle$ and $\langle B, 1, * \rangle$, the set of monoid homomorphisms from $\langle A, 1, * \rangle$ to $\langle B, 1, * \rangle$ is the underlying set of the left-exponential object $\langle A, 1, * \rangle \rightarrow \langle B, 1, * \rangle$ in **CommMon**. However, for the existence and uniqueness proof of λf , for the sake of readability only show this for the case where f is binary.

Exercise 5. Prove that, in **CommMon**, the underlying set of the tensor of $\langle A, 0, + \rangle$ and $\langle B, 0, + \rangle$ is the set $\mathbb{M}(A \times B)/\approx$, where \approx is the least equivalence relation satisfying:

$$\begin{split} [\langle 0,b\rangle] \approx [\] \qquad [\langle a+a',b\rangle] \approx [\langle a,b\rangle,\langle a',b\rangle] \qquad [\langle a,0\rangle] \approx [\] \qquad [\langle a,b+b'\rangle] \approx [\langle a,b\rangle,\langle a,b'\rangle] \\ \ell_1 \approx \ell_1' \wedge \ell_2 \approx \ell_2' \implies \ell_1 + \ell_2 \approx \ell_1' + \ell_2' \qquad (\ell + \ell' \approx \ell' + \ell) \end{split}$$

Exercise 6. Prove that a unit of a *cartesian* multicategory is also a terminal object.