Weighted Limits and Colimits

Ross Tate

March 28, 2018

Definition (Comma Object). Given 1-cells $A_1 \xrightarrow{f_1} B \xleftarrow{f_2} A_2$ of a 2-category, a comma object from f_1 to f_2 is a 0-cell, typically denoted $f_1 \downarrow f_2$, along with 1- and 2-cells as in the following diagram

 $\begin{array}{c}
\pi_{2} \\
f_{1} \downarrow f_{2} \\
\pi_{1} \\
\end{array}$

that is *universal* in the sense that given any other diagram C p_1 A_2 f_2 A_2 f_2 A_2 f_2 A_3 B there exists a unique 1-cell $\langle \alpha \rangle : C \to f_1 \downarrow f_2$

such that $\langle \alpha \rangle * \pi_{\downarrow}$ equals α (and $\langle \alpha \rangle ; \pi_1$ equals p_1 and $\langle \alpha \rangle ; \pi_2$ equals p_2)

Example. Comma categories are the comma objects of Cat.

Definition (Cocomma Object). Given 1-cells $B_1 \xleftarrow{f_1} A \xrightarrow{f_2} B_2$ of a 2-category, a cocomma object from f_1 to f_2 is a 0-cell, typically denoted $f_1 \uparrow f_2$, along with 1- and 2-cells as in the following diagram

that is *universal* in the sense that given any other diagram $A \xrightarrow{f_2} C$ there exists a unique 1-cell $[\alpha] : f_1 \uparrow f_2 \to C$

such that $\kappa_{\uparrow} * [\alpha]$ equals α (and $\kappa_1 ; [\alpha]$ equals c_1 and $\kappa_2 ; [\alpha]$ equals c_2).

Example. For the 1-source $1 \stackrel{!}{\leftarrow} A \stackrel{id}{\rightarrow} A$ in **Prost**, the corresponding cocomma object $!\uparrow A$ is the set Option(A) with none being smaller than some(a) for all $a \in A$. On the flipside, the cocomma object $A \uparrow !$ is the set Option(A)with none being larger than some(a) for all $a \in A$. In both cases, some(a) is less than some(a') iff a is less than a'.

Note that $\mathbb{L}(A)$ in **Set** can be defined as the fixpoint $\mu X.1 + (A \times X)$. In **Prost**, the fixpoints $\mu X.1 + (A \times X)$, $\mu X. \uparrow (A \times X)$, and $\mu X. (A \times X) \uparrow !$ all correspond to lists but with different orderings. In the first, $\ell \leq \ell'$ can only hold if ℓ and ℓ' have the same length, whereas in the second ℓ can be a prefix of ℓ' , and in the third ℓ' can be a prefix of ℓ . In particular, they all agree on lists with the same length, in which case they use componentwise comparison; where they differ is how they handle lists of differing length.

Definition (Inserter Object). Given two 1-cells $f_1, f_2 : A \to B$ of a 2-category, an inserter from f_1 to f_2 is a 0-cell, typically denoted $\text{Ins}(f_1, f_2)$, along with 1-cell $\pi : \text{Ins}(f_1, f_2) \to A$ and 2-cell $\pi_{\text{Ins}} : \pi; f_1 \Rightarrow \pi; f_2 : \text{Ins}(f_1, f_2) \to B$ that is *universal*, meaning given any other 0-cell C with 1-cell $f: C \to A$ and 2-cell $\alpha: f; f_1 \Rightarrow f; f_2: C \to B$ there exists a unique 1-cell $\langle \alpha \rangle : C \to \text{Ins}(f_1, f_2)$ such that $\langle \alpha \rangle : \pi$ equals f and $\langle \alpha \rangle * \pi_{\text{Ins}}$ equals α .

Example. Given an endofunctor $T: \mathbf{C} \to \mathbf{C}$, the category $\mathbf{Alg}(T)$ is the inserter from T to Id_C, and the category $\mathbf{Coalg}(T)$ is the inserter from $\mathrm{Id}_{\mathbf{C}}$ to T.

Definition (Coinserter Object). Given two 1-cells $f_1, f_2 : A \to B$ of a 2-category, a coinserter from f_1 to f_2 is a 0-cell, $\operatorname{Coins}(f_1, f_2)$, along with 1-cell $\kappa : B \to \operatorname{Coins}(f_1, f_2)$ and 2-cell $\kappa_{\operatorname{Coins}} : f_1 : \kappa \Rightarrow f_2 : \kappa : A \to \operatorname{Coins}(f_1, f_2)$ that is *(co)universal*, meaning given any other 0-cell C with 1-cell $f : B \to C$ and 2-cell $\alpha : f_1 : f \Rightarrow f_2 : f : A \to C$ there exists a unique 1-cell $[\alpha] : \operatorname{Coins}(f_1, f_2) \to C$ such that $\kappa : [\alpha]$ equals f and $\kappa_{\operatorname{Coins}} * [\alpha]$ equals α .

Definition (Weighted Limit). Let **I** be a 2-category conceptually describing a scheme, and let $D : \mathbf{I} \to \mathbf{C}$ be a 2-functor conceptually describing a diagram of scheme **I** in the 2-category **C**. Furthermore, let $W : \mathbf{I} \to \mathbf{Cat}$ be a 2-functor conceptually describing a *weighting* of the diagram. A W-weighted *cone* of the diagram D, denoted $\lim_{W} D$, is a 0-cell L of **C** and a collection of 1-cells $\{\pi_w : L \to DI\}_{I \in \mathbf{I}, w \in WI}$ and 2-cells $\{\pi_\omega : \pi_w \Rightarrow \pi_{w'}\}_{I \in \mathbf{I}, \omega: w \to w' \in WI}$ that preserves identities and compositions, meaning $\pi_{id_w} = id_{\pi_w}$ and $\pi_{\omega;\omega'} = \pi_{\omega}; \pi_{\omega'}$, and is *natural*, meaning for all 1-cells $i : I \to I' \in \mathbf{I}$ each appropriate 1-cell $\pi_{(Wi)(w)}$ equals $\pi_w; Di$ and for all 2-cells $\iota : i \Rightarrow i' \in \mathbf{I}$ each appropriate 2-cell $\pi_{(W\iota)_w} = \pi_{\omega}; \pi_w \to W$.

Example. An inserter is a weighted limit as illustrated below:

Example. A comma object is a weighted limit. The scheme is $\bullet \to \bullet \leftarrow \bullet$ and the weighting is $1 \hookrightarrow (1 \xrightarrow{\downarrow} 2) \leftrightarrow 2$.

Definition. A weighted colimit is dual to a weighted limit: given a diagram $D : \mathbf{I} \to \mathbf{C}$ and weighting $W : \mathbf{I}^{\text{op}} \to \mathbf{Cat}$ (the reason that W is contravariant here is complicated and very meta), a weighted colimit $\operatorname{colim}_W D$ in \mathbf{C} is a weighted limit $\lim_W D^{\text{op}}$ in \mathbf{C}^{op} .

Example. Coinserter and cocomma objects are weighted colimits of the same weighting but on the opposite scheme as for inserter and comma objects.