
Universal and Existential Quantification

Ross Tate

April 26, 2018

Remark. As with indexed categories, it is best to first develop intuition using propositions. In logics with universal
quantification, one often expresses the rules for universal quantification as follows:

Γ, x : τ | Φ ` ψ
Γ | Φ ` ∀x : τ. ψ

where x is not free in Φ
Γ | Φ ` ∀x : τ. ψ

Γ | Φ ` ψ[x 7→ e]
where Γ ` e : τ

First off, Γs are type contexts, meaning they are lists of “x : τ”s indicating what type each available variable
has; and Φs are propositional contexts, meaning they are lists of propositions that are assumed to be true. The
judgement Γ | Φ ` ψ conceptually says: with variable types as specified by Γ, the conclusion ψ can be proven under
the assumptions Φ—and implicitly ψ and Φ are well-typed propositions in context Γ. The above are inference rules,
meaning that the conclusion of the rule, i.e. the judgement below the line, holds if the assumptions of the rule, i.e. the
judgements above the line, hold.

The left inference rule says that we can prove ∀x : τ. ψ holds in some context if we can know that ψ holds with
no assumptions specifically about x (which is the intuitive meaning of the side condition). The right inference rule
says that, if we can prove ∀x : τ. ψ holds in some context, then we know that, for any expression e that can be given
type τ in context Γ (which is the intuitive meaning of the side condition), the substituted proposition ψ[x 7→ e] holds.

Look at both rules and notice that, in both cases, Φ is a well-typed propositional context in context Γ, whereas
ψ is a well-typed proposition in context Γ, x : τ . So these two rules are in a sense describing a relation between
propositional contexts Φ and propositions ψ typed in slightly different contexts, namely the proposition ψ is typed
in the context with an additional variable x of type τ .

Given a propositional context Φ typed in context Γ, we can view it as a propositional context typed in context Γ, x :
τ . This is because there is an assignment of variables π : (Γ, x : τ)→ Γ that simply assigns each variable in Γ to itself
as an expression and forgets the variable x, and so we given Φ in context Γ we can substitute with this assignment
to get Φ[π] in context Γ, x : τ . But because π is essentially invisible syntactically, the syntactic result of Φ[π] is
simply Φ.

On the other hand, given a proposition ψ typed in context Γ, x : τ , the universally-quantified proposition ∀x : τ. ψ
is typed in context Γ without x. Thus, whereas substituting with π maps propositional contexts typed in context Γ to
propositional contexts typed in context Γ, x : τ , universal quantification maps propositions typed in context Γ, x : τ
to propositions typed in Γ. That is, the two mappings are in opposite directions. And in fact, the inference rules
make these mappings adjunctions, giving a transposition between the top and bottom implications below:

Φ[π] ` ψ

Φ ` ∀x : τ. ψ
where Γ ` Φ and Γ, x : τ ` ψ

Definition (Simple Products). Suppose I has binary products. For any two objects I and J of I, let the mor-
phisms πI,J : I ×J → I denote the appropriate projection. An I-indexed category C : Iop → Cat has (strict) simple
products if the functor C(πI,J) : C(I)→ C(I×J) has a right adjoint

∏
I,J : C(I×J)→ C(I), and furthermore this

construction is natural with respect to I, meaning for every morphism a : I → I ′ the following diagram commutes:

C(I ′ × J) C(I ′)

C(I × J) C(I)

∏
I′,J

C(a)C(a× J)

∏
I,J

Remark. In the above, I represents Γ and J represents x : τ . The functor C(πI,J) representings weakening, and
the functor

∏
I,J represents universal quantification. The adjunction captures the transposition described above.

The naturality condition simply captures the expectation that substitution of the variables in Γ goes through the
universal quantification, i.e. the substitution (∀x : τ. ψ)[a] reduces to ∀x : τ. (ψ[a]).

1



Remark. On the flipside, the inference rules for existential quantification are as follows:

Γ, x : τ | Φ, ψ ` φ
Γ | Φ,∃x : τ. ψ ` φ

where x is not free in Φ or φ
Γ | Φ ` ψ[x 7→ e]

Γ | Φ ` ∃x : τ. ψ
where Γ ` e : τ

Note that these are essentially dual to the rules for universal quantification. In fact, they give a transposition between
the top and bottom implications below:

Φ[π], ψ ` φ[π]

Φ,∃x : τ. ψ ` φ
where Γ ` Φ and Γ ` φ and Γ, x : τ ` ψ

One subtle complication here, though, is that there are other propositions on the left-hand side besides ψ. That
is, there is some additional context given by Φ. We will return to this subtlety in a bit, but first we consider the
situation when there is always exactly one proposition in the list of assumptions, in particular making Φ in this
discussion empty.

Definition (Simple Coproducts). Suppose I has binary products. For any two objects I and J of I, let the mor-
phisms πI,J : I ×J → I denote the appropriate projection. An I-indexed category C : Iop → Cat has (strict) simple
coproducts if the functor C(πI,J) : C(I)→ C(I×J) has a left adjoint

∐
I,J : C(I×J)→ C(I), and furthermore this

construction is natural with respect to I, meaning for every morphism a : I → I ′ the following diagram commutes:

C(I ′ × J) C(I ′)

C(I × J) C(I)

∐
I′,J

C(a)C(a× J)

∐
I,J

Remark. In the above, I represents Γ and J represents x : τ . The functor C(πI,J) representings weakening, and
the functor

∐
I,J represents existential quantification. The adjunction captures the transposition described above

(for empty Φ). The naturality condition simply captures the expectation that substitution of the variables in Γ goes
through the existential quantification, i.e. the substitution (∃x : τ. ψ)[a] reduces to ∃x : τ. (ψ[a]).

Definition (Fibred Finite Products). An indexed category C : Iop → Cat has fibred finite products if, for every
object I in I the category C(I) has finite products, and for every morphism a : I → J the functor C(a) preserves
finite products.

Remark. In non-linear logics, we can represent a propositional context Φ by the conjunction of all its elements,
i.e. φ1 ∧ · · · ∧ φn. Logical conjunction is simply a categorical product within a given context on fibre. If something
implies ψ1 and also implies ψ2, then it implies ψ1∧ψ2, and in particular ψ1∧ψ2 implies both ψ1 and ψ2. Thus every
fibre of a logic with conjunction (and >) has finite products. Furthermore, since substitutions (ψ1 ∧ ψ2)[a] reduce
to (ψ1[a]) ∧ (ψ2[a]), the substitution functors preserve finite products.

Definition (Simple Coproducts satisfying Frobenius). Given an indexed category C : Iop → Cat with fibred finite
products and simple coproducts, for every pair of objects I and J of I and every object C of C(I) and object D
of C(I ×J) there is a particularly important morphism that is induced by the structure of fibred finite products and
simple coproducts, which is a morphism of the category C(I) with the following signature:∐

I,J

C(a)(C)×D → C ×
∐
I×J

D

C is said to have simple coproducts satisfying Frobenius if induced C(I)-morphism with the signature above has an
inverse.

Remark. If one were to formulate propositional contexts using indexed multicategories rather than indexed categories,
then simple coproducts satisfying Frobenius correspond to strong simple coproducts, i.e. simple coproducts that can
tolerate additional (propositional) context.

2


