Monoidal Categories

Ross Tate

April 20, 2018

Definition. Given a category \mathbf{C}, the category $\mathbb{L} \mathbf{C}$ is comprised of the following:
Objects An object is a list of objects of C.
Morphisms A morphism from $\left[A_{1}, \ldots, A_{m}\right]$ to $\left[B_{1}, \ldots, B_{n}\right]$ only exists when m equals n, in which case it is a list of morphisms $f_{1}: A_{1} \rightarrow B_{1}, \ldots, f_{n}: A_{n} \rightarrow B_{n}$ of \mathbf{C}

Identities The identity of $\left[A_{1}, \ldots, A_{n}\right]$ is $\left[i d_{A_{1}}, \ldots, i d_{A_{n}}\right]$
Composition The composition of $\left[f_{1}, \ldots, f_{n}\right]$ with $\left[g_{1}, \ldots, g_{n}\right]$ is $\left[f_{1} ; g_{1}, \ldots, f_{n} ; g_{n}\right]$
Remark. The above construction extends to a 2-monad on Cat, with $\eta_{\mathbf{C}}$ being the functor that maps each object and each morphism to the singleton list containing it, and $\mu_{\mathbf{C}}$ being the functor that maps each list of lists of objects and each list of lists of morphisms to its flattening.

Definition (Strict Monoidal Category). A strict monoidal category is equivalently defined as a (strict) monad algebra of \mathbb{L} on Cat or as an internal monoid of the multicategory Cat, i.e. a category \mathbf{C} along with an object I of \mathbf{C} and a binary functor $\otimes:[\mathbf{C}, \mathbf{C}] \rightarrow \mathbf{C}$ satisfying identity and associativity. Similarly, a strict monoidal functor is equivalently defined as a (strict) morphism of monad algebras of \mathbb{L} on Cat or as an internal monoid homomorphism of the multicategory Cat, i.e. a functor F that preserves I and \otimes (strictly). A strict monoidal transformation is defined as a transformation of (strict) morphisms of monad algebras of \mathbb{L} on Cat, or equivalently as a natural transformation α from F to G such that α_{I} equals $i d_{I^{\prime}}$ and $\alpha_{A \otimes B}$ equals $\alpha_{A} \otimes^{\prime} \alpha_{B}$.

Definition (Weak Monoidal Category). A weak monoidal category is equivalently defined as a weak monad algebra of \mathbb{L} on Cat or as the category of unary morphisms of a representable multicategory. Similarly, a weak monoidal functor is equivalently defined as a weak morphism of weak monad algebras of \mathbb{L} on $\mathbf{C a t}$ or as a functor corresponding to a tensor-preserving multifunctor between representable multicategories, i.e. multifunctors F with the property that $F T$ with $F t$ is a tensor of $F A_{1}, \ldots, F A_{n}$ whenever T with t is a tensor of A_{1}, \ldots, A_{n}. A weak monoidal transformation is defined as a transformation of weak morphisms of weak monad algebras of \mathbb{L} on $\mathbf{C a t}$, or equivalently as a natural fransformation corresponding to a natural transformation α of tensor-preserving multifunctors such that $\alpha_{T}: F T \rightarrow G T$, where T with $t: \vec{A} \rightarrow T$ is a tensor of A_{1}, \ldots, A_{n}, has the property that $\Delta_{F t} \alpha_{T}$ equals $\Delta_{\alpha_{A_{1}}, \ldots, \alpha_{A_{n}}} G t$.
Remark. Yet another equivalent, and particularly common, definition of weak monoidal category is a category \mathbf{C} along with an object I of \mathbf{C}, a binary functor $\otimes: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}$, and natural isomorphisms $\left\{\rho_{A}: A \otimes I \rightarrow A\right\}_{A \in \mathbf{C}}$, $\left\{\lambda_{A}: I \otimes A \rightarrow A\right\}_{A \in \mathbf{C}}$, and $\left\{\alpha_{A, B, C}:(A \otimes B) \otimes C \rightarrow A \otimes(B \otimes C)\right\}_{A, B, C \in \mathbf{C}}$ making the following triangle and pentagon commute:

Definition (Lax Monoidal Functor). A lax monoidal functor between strict/weak monoidal categories is equivalently defined as a lax morphism of strict/weak monad algebras of \mathbb{L} on Cat or as a functor corresponding to a (not necessarily tensor-preserving) multifunctor between representable multicategories. A lax monoidal transformation is defined as a transformation of lax morphisms of weak monad algebras of \mathbb{L} on Cat, or equivalently as a natural fransformation corresponding to a natural transformation of multifunctors.

Remark. Yet another equivalent, and particularly common, definition of lax monoidal functor corresponding to the earlier common definition of weak monoidal categories is a functor F along with a morphism merge $: I^{\prime} \rightarrow F I$ and a natural transformation $\left\{\text { merge }_{A, B}: F A \otimes^{\prime} F B \rightarrow F(A \otimes B)\right\}_{A, B \in \mathbf{C}}$ such that the following diagrams commute:

