Monads and Comonads

Ross Tate

April 9, 2018

Definition (Monad). A monad in a given 2-category is comprised of the following:

- 0-cell C
- 1-cell $m: C \rightarrow C$ (generally referred to as the monad)
- 2-cells $\eta: i d_{C} \Rightarrow m: C \Rightarrow C$ (called the unit) and $\mu: m ; m \Rightarrow m: C \rightarrow C$ (called the join)
- such that the following identity and associativity laws hold:

Remark. In terms of string diagrams, the identity and associative laws are formulated as follows:

Remark. Given a 2-category, one can construct a multicategory whose objects are the 1-cells of the multicategory and whose morphisms are 2-cells from the composition of the inputs to the output. A monad is an internal monoid of that multicategory.

Theorem. For any monad $\langle C, m, \eta, \mu\rangle$ and $n: \mathbb{N}$, all 2-cells from m^{n} to m built from η, μ, and identities are equal.

Example. The functor \mathbb{O} serves as a basis for a monad on Set in the 2-category Set. The unit is some, and the join $\mu_{A}: \mathbb{O}(\mathbb{O}(A)) \rightarrow \mathbb{O}(A)$ maps some $(\operatorname{some}(a))$ to some (a) and maps some(none) and none to none.

Example. \langle Set, \mathbb{L}, singleton, $f l a t t e n\rangle$ is a monad in Cat. Similarly, $\langle\mathbf{S e t}, \mathbb{P}, \lambda x .\{x\}, \bigcup\rangle$ is also a monad in Set. There is also a monad for the functor M: Set \rightarrow Set that maps sets A to the set of finite multisets/bags of A, i.e. finite collections of A elements in which duplicates matter but order does not. And there is a monad for the functor $\mathbb{F}:$ Set \rightarrow Set that maps sets A to the set of finite subsets of A.

Example. Given a set C, the functor $C \rightarrow \cdot$ Set \rightarrow Set is a monad. The unit is the natural transformation mapping $a \in A$ to $(\lambda c \in C . a) \in C \rightarrow A$. The join is the natural transformation mapping $f \in C \rightarrow(C \rightarrow A)$ to $(\lambda c \in C . f(c)(c)) \in C \rightarrow A$.

Example. Given a set S, the functor $S \rightarrow S \times \cdot$: Set \rightarrow Set is a monad. The unit is the natural transformation mapping $a \in A$ to $(\lambda s \in S .\langle s, a\rangle) \in S \rightarrow S \times A$. The join is the natural transformation mapping $f \in S \rightarrow(S \times(S \rightarrow S \times A))$ to $\left(\lambda s . \pi_{2}(f(s))\left(\pi_{1}(f(s))\right)\right) \in S \rightarrow S \times A$.

Example. Given a monoid $\langle M, e, *\rangle$, the functor $M \times \cdot$: Set \rightarrow Set is a monad. The unit is the natural transformation mapping $a \in A$ to $\langle e, a\rangle \in M \times A$. The join is the natural transformation mapping $\left\langle m,\left\langle m^{\prime}, a\right\rangle\right\rangle \in M \times(M \times A)$ to $\left\langle m * m^{\prime}, a\right\rangle \in M \times A$.

Example. Given a graph $\langle V, E, s, t\rangle$ one can define the set of paths as alternating lists of vertices and edges $\left(v_{0}, e_{0}, v_{1}, e_{1}, \ldots, v_{n}\right)$ with the property that $s\left(e_{i}\right)=v_{i}$ and $t\left(e_{i}\right)=v_{i+1}$ for all indices i. The source of such a path is v_{0}, and the target is v_{n}. Thus we have a graph $\left\langle V, \operatorname{Path}(E), s_{\text {Path }}, t_{\text {Path }}\right\rangle$. This Path construction extends to a monad. For both the unit and join, the function on vertices on simply the identity. As for edges, the unit maps an edge e to the path $(s(e), e, t(e))$, and the join essentially flattens paths of paths.

Definition (Monad Morphism). An (oplax) monad morphism from $\left\langle C_{1}, m_{1}, \eta_{1}, \mu_{1}\right\rangle$ to $\left\langle C_{2}, m_{2}, \eta_{2}, \mu_{2}\right\rangle$ is a 1cell $f: C_{1} \rightarrow C_{2}$ and a 2-cell $\alpha: m_{1} ; f \Rightarrow f ; m_{2}$ such that

Example. The obvious natural transformations from \mathbb{L} to \mathbb{M} to \mathbb{F} to \mathbb{P} are all monad morphisms where the 1-cell f is the identity functor of Set.

Example. The functor $\pi_{E}: \mathbf{G r a p h} \rightarrow$ Set has the property that Path; π_{E} equals $\pi_{E} ; \mathbb{L}$. This 1-cell π_{E} in fact forms a monad morphism from Path to \mathbb{L} where the 2 -cell is the identity 2 -cell.

Definition (Comonad). A comonad in a 2-category is a 0 -cell C, a 1-cell $c: C \rightarrow C$ (typically called the comonad), and 2-cells $\varepsilon: m \Rightarrow i d_{C}$ (often called the counit) and $\delta: m \Rightarrow m ; m$ (often called the cojoin or comultiplication) satisfying equalities dual to the identity and associativity laws of monads.

Example. Given any set C, the functor $C \times \cdot$ Set \rightarrow Set is a comonad on Set in Cat. The counit is the natural transformation mapping $\langle c, a\rangle \in C \times A$ to $a \in A$. The cojoin is the natural transformation mapping $\langle c, a\rangle \in C \times A$ to $\langle c,\langle c, a\rangle\rangle \in C \times(C \times A)$.

Example. Given a monoid $\langle M, e, *\rangle$, the functor $M \rightarrow$: Set \rightarrow Set is a comonad. The counit is the natural transformation mapping $f \in M \rightarrow A$ to $f(e) \in A$. The cojoin is the natural transformation mapping $f \in M \rightarrow A$ to $\lambda m \in M . \lambda m^{\prime} \in M . s\left(m * m^{\prime}\right) \in M \rightarrow(M \rightarrow A)$. When the monoid is $\langle\mathbb{N}, 0,+\rangle$, this is known as the stream comonad.

Definition (Comonad Morphism). Just as a comonad in a 2-category \mathbf{C} coincides with a monad in $\mathbf{C}^{\text {co }}$, a comonad morphism in \mathbf{C} coincides with a monad morphism in $\mathbf{C}^{\text {co }}$.

