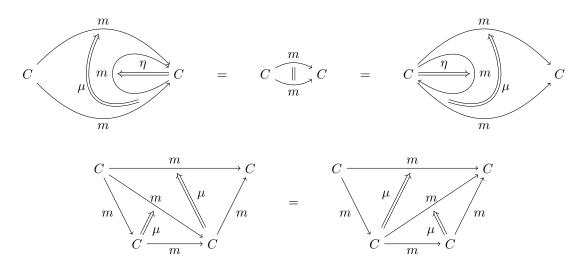
Monads and Comonads

Ross Tate

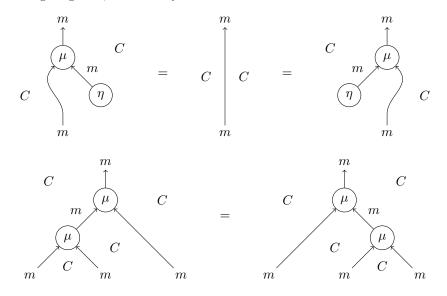
April 9, 2018

Definition (Monad). A monad in a given 2-category is comprised of the following:

- 0-cell *C*
- 1-cell $m: C \to C$ (generally referred to as the monad)
- 2-cells $\eta: id_C \Rightarrow m: C \Rightarrow C$ (called the unit) and $\mu: m; m \Rightarrow m: C \to C$ (called the join)
- such that the following identity and associativity laws hold:



Remark. In terms of string diagrams, the identity and associative laws are formulated as follows:



Remark. Given a 2-category, one can construct a multicategory whose objects are the 1-cells of the multicategory and whose morphisms are 2-cells from the composition of the inputs to the output. A monad is an internal monoid of that multicategory.

Theorem. For any monad (C, m, η, μ) and $n : \mathbb{N}$, all 2-cells from m^n to m built from η, μ , and identities are equal.

Example. The functor \mathbb{O} serves as a basis for a monad on **Set** in the 2-category **Set**. The unit is some, and the join $\mu_A : \mathbb{O}(\mathbb{O}(A)) \to \mathbb{O}(A)$ maps some(some(a)) to some(a) and maps some(none) and none to none.

Example. (Set, \mathbb{E} , singleton, flatten) is a monad in Cat. Similarly, (Set, \mathbb{P} , λx . {x}, \bigcup) is also a monad in Set. There is also a monad for the functor \mathbb{M} : Set \rightarrow Set that maps sets A to the set of finite multisets/bags of A, i.e. finite collections of A elements in which duplicates matter but order does not. And there is a monad for the functor \mathbb{F} : Set \rightarrow Set that maps sets A to the set of finite subsets of A.

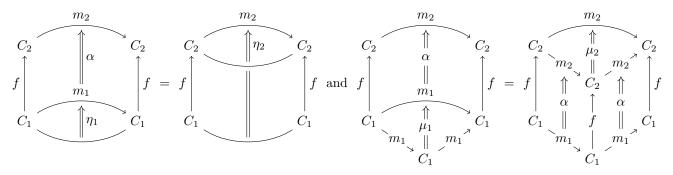
Example. Given a set C, the functor $C \to \cdot$: **Set** \to **Set** is a monad. The unit is the natural transformation mapping $a \in A$ to $(\lambda c \in C. a) \in C \to A$. The join is the natural transformation mapping $f \in C \to (C \to A)$ to $(\lambda c \in C. f(c)(c)) \in C \to A$.

Example. Given a set S, the functor $S \to S \times \cdot :$ **Set** \to **Set** is a monad. The unit is the natural transformation mapping $a \in A$ to $(\lambda s \in S, \langle s, a \rangle) \in S \to S \times A$. The join is the natural transformation mapping $f \in S \to (S \times (S \to S \times A))$ to $(\lambda s. \pi_2(f(s))(\pi_1(f(s)))) \in S \to S \times A$.

Example. Given a monoid $\langle M, e, * \rangle$, the functor $M \times \cdot :$ **Set** \to **Set** is a monad. The unit is the natural transformation mapping $a \in A$ to $\langle e, a \rangle \in M \times A$. The join is the natural transformation mapping $\langle m, \langle m', a \rangle \rangle \in M \times (M \times A)$ to $\langle m * m', a \rangle \in M \times A$.

Example. Given a graph $\langle V, E, s, t \rangle$ one can define the set of paths as alternating lists of vertices and edges $(v_0, e_0, v_1, e_1, \ldots, v_n)$ with the property that $s(e_i) = v_i$ and $t(e_i) = v_{i+1}$ for all indices *i*. The source of such a path is v_0 , and the target is v_n . Thus we have a graph $\langle V, \text{Path}(E), s_{\text{Path}}, t_{\text{Path}} \rangle$. This Path construction extends to a monad. For both the unit and join, the function on vertices on simply the identity. As for edges, the unit maps an edge *e* to the path (s(e), e, t(e)), and the join essentially flattens paths of paths.

Definition (Monad Morphism). An (oplax) monad morphism from $\langle C_1, m_1, \eta_1, \mu_1 \rangle$ to $\langle C_2, m_2, \eta_2, \mu_2 \rangle$ is a 1-cell $f: C_1 \to C_2$ and a 2-cell $\alpha: m_1; f \Rightarrow f; m_2$ such that



Example. The obvious natural transformations from \mathbb{L} to \mathbb{M} to \mathbb{F} to \mathbb{P} are all monad morphisms where the 1-cell f is the identity functor of **Set**.

Example. The functor $\pi_E : \mathbf{Graph} \to \mathbf{Set}$ has the property that Path; π_E equals π_E ; \mathbb{L} . This 1-cell π_E in fact forms a monad morphism from Path to \mathbb{L} where the 2-cell is the identity 2-cell.

Definition (Comonad). A comonad in a 2-category is a 0-cell C, a 1-cell $c : C \to C$ (typically called the comonad), and 2-cells $\varepsilon : m \Rightarrow id_C$ (often called the counit) and $\delta : m \Rightarrow m; m$ (often called the cojoin or comultiplication) satisfying equalities dual to the identity and associativity laws of monads.

Example. Given any set C, the functor $C \times \cdot :$ **Set** \to **Set** is a comonad on **Set** in **Cat**. The counit is the natural transformation mapping $\langle c, a \rangle \in C \times A$ to $a \in A$. The cojoin is the natural transformation mapping $\langle c, a \rangle \in C \times A$ to $a \in A$. The cojoin is the natural transformation mapping $\langle c, a \rangle \in C \times A$ to $\langle c, \langle c, a \rangle \rangle \in C \times (C \times A)$.

Example. Given a monoid $\langle M, e, * \rangle$, the functor $M \to \cdot :$ **Set** \to **Set** is a comonad. The counit is the natural transformation mapping $f \in M \to A$ to $f(e) \in A$. The cojoin is the natural transformation mapping $f \in M \to A$ to $\lambda m \in M$. $\lambda m' \in M$. $s(m * m') \in M \to (M \to A)$. When the monoid is $\langle \mathbb{N}, 0, + \rangle$, this is known as the stream comonad.

Definition (Comonad Morphism). Just as a comonad in a 2-category \mathbf{C} coincides with a monad in \mathbf{C}^{co} , a comonad morphism in \mathbf{C} coincides with a monad morphism in \mathbf{C}^{co} .