Monad Algebras

Ross Tate

April 11, 2018

Definition (Monad Algebra). A monad algebra of a Cat-monad $\langle M: \mathbf{C} \rightarrow \mathbf{C}, \eta, \mu\rangle$, also known as an EilenbergMoore algebra, is an object A of \mathbf{C} along with a morphism $a: M A \rightarrow A$ such that the following both commute:

Example. The monad algebras for \mathbb{L} coincide with monoids. The monad algebras for \mathbb{M} coincide with commutative monoids. The monad algebras for \mathbb{F} coincide with idempotent (meaning $\forall x . x * x=x$) commutative monoids. The monad algebras for \mathbb{P} coincide with partial orders with arbitrary joins (by defining $x \leq x^{\prime}$ as $a\left(\left\{x, x^{\prime}\right\}\right)=x^{\prime}$).
Definition (Eilenberg-Moore Category). The Eilenberg-Moore category of a monad $\langle M: \mathbf{C} \rightarrow \mathbf{C}, \eta$, $\mu\rangle$, often denoted \mathbf{C}^{M}, is the full subcategory of $\operatorname{Alg}(M)$ comprised of the M-algebras satisfying the requirements of monad algebras of $\langle M, \eta, \mu\rangle$. Note that \mathbf{C}^{M} can be viewed as a concrete category over \mathbf{C}.
Example. The category Set ${ }^{\mathbb{L}}$ is concretely isomorphic to Mon. The category Set ${ }^{\mathbb{M}}$ is concretely isomorphic to CommMon. The category Set ${ }^{\mathbb{P}}$ is concretely isomorphic to JCPos.
Example. The category Graph ${ }^{\text {Path }}$ is concretely isomorphic to Cat.
Definition (Premodule of a Monad). Given a monad $\langle m: C \rightarrow C, \eta, \mu\rangle$ of a 2-category \mathbf{C}, a premodule, also known as a left module, is a 0 -cell L along with a 1-cell $\ell: L \rightarrow C$ and a 2 -cell $\lambda: \ell ; m \Rightarrow \ell$ satisfying the following equalities:

Remark. In terms of string diagrams, the above equalities are formulated as

Example. A monad algebra for a Cat-monad is simply a premodule where L is $\mathbf{1}, \ell$ is A, and λ is a.
Example. Every monad $\langle m: C \rightarrow C, \eta, \mu\rangle$ is a premodule of itself, with L as C, ℓ as m, and λ as μ.
Example. For any Cat-monad $\langle M: \mathbf{C} \rightarrow \mathbf{C}, \eta, \mu\rangle$, the category \mathbf{C}^{M} along with its underlying functor $U: \mathbf{C}^{M} \rightarrow \mathbf{C}$ and the canonical natural transformation $\alpha: U ; M \Rightarrow U$ inherited from $\operatorname{Alg}(M)$ forms a premodule of $\langle M, \eta, \mu\rangle$. In fact, it is the universal premodule of the monad $\langle M, \eta, \mu\rangle$.
Definition (Eilenberg-Moore Object). An Eilenberg-Moore object C^{m} of a given monad $\langle m: C \rightarrow C, \eta, \mu\rangle$ in a 2-category \mathbf{C} is a universal premodule of that monad.
Remark. Because every monad is its own premodule, this implies there is a 1-cell $f: C \rightarrow C^{m}$ (if C^{m} exists) such that $f ; u$ equals m. One can show that these 1-cells always form an adjunction $f \dashv u$ that gives rise to the monad m.

Definition (Lax Monad Algebra). A lax monad algebra of a 2 -monad $\langle M: \mathbf{C} \rightarrow \mathbf{C}, \eta, \mu\rangle$ is a 0 -cell A of the 2-category \mathbf{C} along with a 1-cell $a: M A \rightarrow A$ and 2-cells given below

such that the following identity and associativity laws hold:

Definition (Colax Monad Algebra). The definition of a colax monad algebra is the same as that of a lax monad algebra but with the 2-cells ι and γ going in the reverse direction.

Definition (Weak Monad Algebra). A weak monad algebra is both a lax and a colax monad algebra in which the opposing $\iota \mathrm{s}$ and opposing $\gamma \mathrm{s}$ are inverses of each other. That is, a weak monad algebra is a lax or colax monad algebra in which ι and γ have inverses.
Definition (Strict Monad Algebra). A strict monad algebra is both a lax and a colax monad algebra in which both the ι s and the $\gamma \mathrm{s}$ are identities. That is, a strict monad algebra is a lax or colax monad algebra in which ι and γ are both identities.

Definition (Lax Morphism of Lax Monad Algebras). A lax morphism from $\langle A, a, \iota, \gamma\rangle$ to $\left\langle B, b, \iota^{\prime}, \gamma^{\prime}\right\rangle$ is a 1cell $f: A \rightarrow B$ along with a 2 -cell $\alpha: M f ; b \Rightarrow a ; f$ (note the direction) satisfying the following equalities:

Definition. A transformation from $\langle f, \alpha\rangle$ to $\left\langle f^{\prime}, \alpha^{\prime}\right\rangle$ is a 2-cell $\theta: f \Rightarrow f^{\prime}$ such that $\alpha ;(a * \theta)=(M \theta * b) ; \alpha^{\prime}$.

