## Monad Algebras

## Ross Tate

## April 11, 2018

**Definition** (Monad Algebra). A monad algebra of a **Cat**-monad  $\langle M : \mathbf{C} \to \mathbf{C}, \eta, \mu \rangle$ , also known as an Eilenberg-Moore algebra, is an object A of **C** along with a morphism  $a : MA \to A$  such that the following both commute:



**Example.** The monad algebras for  $\mathbb{E}$  coincide with monoids. The monad algebras for  $\mathbb{M}$  coincide with commutative monoids. The monad algebras for  $\mathbb{F}$  coincide with idempotent (meaning  $\forall x. \ x * x = x$ ) commutative monoids. The monad algebras for  $\mathbb{P}$  coincide with partial orders with arbitrary joins (by defining  $x \leq x'$  as  $a(\{x, x'\}) = x'$ ).

**Definition** (Eilenberg-Moore Category). The Eilenberg-Moore category of a monad  $\langle M : \mathbf{C} \to \mathbf{C}, \eta, \mu \rangle$ , often denoted  $\mathbf{C}^M$ , is the full subcategory of  $\mathbf{Alg}(M)$  comprised of the *M*-algebras satisfying the requirements of monad algebras of  $\langle M, \eta, \mu \rangle$ . Note that  $\mathbf{C}^M$  can be viewed as a concrete category over  $\mathbf{C}$ .

**Example.** The category  $\mathbf{Set}^{\mathbb{L}}$  is concretely isomorphic to **Mon**. The category  $\mathbf{Set}^{\mathbb{M}}$  is concretely isomorphic to **CommMon**. The category  $\mathbf{Set}^{\mathbb{P}}$  is concretely isomorphic to **JCPos**.

**Example.** The category **Graph**<sup>Path</sup> is concretely isomorphic to **Cat**.

**Definition** (Premodule of a Monad). Given a monad  $\langle m : C \to C, \eta, \mu \rangle$  of a 2-category **C**, a premodule, also known as a left module, is a 0-cell *L* along with a 1-cell  $\ell : L \to C$  and a 2-cell  $\lambda : \ell ; m \Rightarrow \ell$  satisfying the following equalities:



Remark. In terms of string diagrams, the above equalities are formulated as



**Example.** A monad algebra for a **Cat**-monad is simply a premodule where L is  $\mathbf{1}, \ell$  is A, and  $\lambda$  is a.

**Example.** Every monad  $\langle m : C \to C, \eta, \mu \rangle$  is a premodule of itself, with L as C,  $\ell$  as m, and  $\lambda$  as  $\mu$ .

**Example.** For any **Cat**-monad  $\langle M : \mathbf{C} \to \mathbf{C}, \eta, \mu \rangle$ , the category  $\mathbf{C}^M$  along with its underlying functor  $U : \mathbf{C}^M \to \mathbf{C}$ and the canonical natural transformation  $\alpha : U; M \Rightarrow U$  inherited from  $\mathbf{Alg}(M)$  forms a premodule of  $\langle M, \eta, \mu \rangle$ . In fact, it is the *universal* premodule of the monad  $\langle M, \eta, \mu \rangle$ .

**Definition** (Eilenberg-Moore Object). An Eilenberg-Moore object  $C^m$  of a given monad  $\langle m : C \to C, \eta, \mu \rangle$  in a 2-category **C** is a universal premodule of that monad.

*Remark.* Because every monad is its own premodule, this implies there is a 1-cell  $f : C \to C^m$  (if  $C^m$  exists) such that f : u equals m. One can show that these 1-cells always form an adjunction  $f \dashv u$  that gives rise to the monad m.

**Definition** (Lax Monad Algebra). A lax monad algebra of a 2-monad  $\langle M : \mathbf{C} \to \mathbf{C}, \eta, \mu \rangle$  is a 0-cell A of the 2-category  $\mathbf{C}$  along with a 1-cell  $a : MA \to A$  and 2-cells given below



**Definition** (Colax Monad Algebra). The definition of a colax monad algebra is the same as that of a lax monad algebra but with the 2-cells  $\iota$  and  $\gamma$  going in the reverse direction.

**Definition** (Weak Monad Algebra). A weak monad algebra is both a lax and a colax monad algebra in which the opposing  $\iota$ s and opposing  $\gamma$ s are inverses of each other. That is, a weak monad algebra is a lax or colax monad algebra in which  $\iota$  and  $\gamma$  have inverses.

**Definition** (Strict Monad Algebra). A strict monad algebra is both a lax and a colax monad algebra in which both the  $\iota$ s and the  $\gamma$ s are identities. That is, a strict monad algebra is a lax or colax monad algebra in which  $\iota$  and  $\gamma$  are both identities.

**Definition** (Lax Morphism of Lax Monad Algebras). A lax morphism from  $\langle A, a, \iota, \gamma \rangle$  to  $\langle B, b, \iota', \gamma' \rangle$  is a 1-cell  $f : A \to B$  along with a 2-cell  $\alpha : Mf ; b \Rightarrow a ; f$  (note the direction) satisfying the following equalities:



**Definition.** A transformation from  $\langle f, \alpha \rangle$  to  $\langle f', \alpha' \rangle$  is a 2-cell  $\theta : f \Rightarrow f'$  such that  $\alpha : (a * \theta) = (M\theta * b) : \alpha'$ .