Isomorphisms

Ross Tate

January 17, 2018

Example. The monoid $\langle\mathbb{R}, 0,+\rangle$ is isomorphic in Mon to the monoid $\left\langle\mathbb{R}^{>}, 1, *\right\rangle$ as evidenced by $\lambda x . e^{x}$ and $\lambda x . \ln (x)$.
Example. The above also extends to an isomorphism in Grp between $\langle\mathbb{R}, 0,+, \lambda x .-x\rangle$ and $\left\langle\mathbb{R}^{>}, 1, *, \lambda x \cdot \frac{1}{x}\right\rangle$.
Example. A relation $R: A \rightarrow B$ in Rel is an isomorphism iff both $\forall a \in A . \exists!b \in B . a R b$ and $\forall b \in B . \exists!a \in A$. a $R b$ hold.

Example. Two graphs are isomorphic if conceptually one is simply a "renaming" of the vertices and edges of the other.

Example. The only isomorphisms in Circ are the identity morphisms.
Example. $\neg: \mathbb{B} \rightarrow \mathbb{B}$ is its own inverse in Set.
Example. $\neg:\langle\mathbb{B}, \mathbb{E}, \wedge\rangle \rightarrow\langle\mathbb{B}, \mathbb{F}, \vee\rangle$ is the inverse of $\neg:\langle\mathbb{B}, \mathbb{F}, \vee\rangle \rightarrow\langle\mathbb{B}, \mathbb{E}, \wedge\rangle$ in Mon.
Example. Negation is an endomorphism on $\langle\mathbb{Z}, 0,+\rangle$ that is its own inverse in Mon.
Example. Negation serves as an isomorphism in $\operatorname{Rel}(2)$ between $\langle\mathbb{R}, \leq\rangle$ and $\langle\mathbb{R}, \geq\rangle$ in both directions.
Example. Negation does not serve as an isomorphism in $\boldsymbol{\operatorname { R e l }}(2)$ between $\langle\mathbb{R}, \leq\rangle$ and $\langle\mathbb{R},>\rangle$.

