Functors

Ross Tate

January 18, 2018

Example. The function mapping $\langle A, e, *, {}^{-1} \rangle$ to $\langle A, e, * \rangle$ extends to a full and faithful functor from **Grp** to **Mon** (that consequently reflects isomorphisms).

Example. The function mapping a set A to the monoid $\langle \mathbb{L}A, [], + \rangle$ extends to a faithful functor from **Set** to **Mon**, with the function $f : A \to B$ mapping to the monoid homomorphism map $(f) : \langle \mathbb{L}A, [], + \rangle \to \langle \mathbb{L}B, [], + \rangle$.

Example. The function mapping a set A to itself and the function $f : A \to B$ to the relation $\{\langle a, f(a) \rangle \mid a \in A\} \subseteq A \times B$ extends to a faithful functor from **Set** to **Rel** that reflects isomorphisms.

Example. The function mapping a set A to its power set $\mathbb{P}A$ and the relation $R \subseteq A \times B$ to the function $\lambda x : \mathbb{P}A$. $\{b \mid a \in x, a \ R \ b\}$ extends to a faithful functor from **Rel** to **Set** that reflects isomorphisms.

Example. The function mapping $n \in \mathbb{N}$ to the set \mathbb{B}^n and mapping a circuit to the function on Booleans that it implements extends to a full functor from **Circ** to **Set**.

Example. The function mapping a circuit to its graph of gates and wires does *not* extend to a functor from **Circ** to **Graph** because circuits are *morphisms* in the former and graphs are *objects* in the latter.

Example. The function mapping a deterministic automaton to the graph whose vertices are the states of the automaton and whose edges are the transitions of the automaton labeled with the appropriate character extends to a faithful functor from Σ -Seq to Σ -Graph.

Example. The function mapping a deterministic automaton to the set of strings accepted by the automaton extends to a functor from Σ -Seq to Σ -Lang.

Example. The function mapping $n \in \mathbb{N}$ to the set \mathbb{R}^n and mapping a matrix to the linear function it specifies extends to a faithful functor from **Mat** to **Set** that reflects isomorphisms (and a full and faithful functor to **Vec**, for those familiar with vector spaces).