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Definition (Enriched Category over a Multicategory). For a multicategory M, an M-enriched category is made of:

Objects A set Ob of objects

Morphisms For each A and B in Ob, an object Hom(A,B) of M

Identities For each A in Ob, a nullary multimorphism idA : [ ]→M Hom(A,A)

Compositions For eachA, B, and C in Ob, a multimorphism compA,B,C : [Hom(A,B),Hom(B,C)]→M Hom(A,C)

Identity With the property that
a

idA,idHom(A,B)
compA,B,C and

a
idHom(A,B),idB

compA,B,C equal idHom(A,B)

Associativity And the property that
a

compA,B,C ,idHom(C,D)
compA,C,D equals

a
idHom(A,B),compB,C,D

compA,B,D

Example. A Set-enriched category is simply a category. Ob is the set of objects of the category, and Hom(A,B) is
the set of morphisms from A to B. idA is the identity morphism idA, and compA,B,C is the composition function
mapping f : A → B and g : B → C to f ; g : A → C. The identity and associativity requirements of Set-enriched
categories are exactly the identity and associativity requirements of categories.

Example. Many examples of enriched categories are enriched over a multicategory M with an obvious faithful
functor to Set. In such cases, M-enriched categories can be viewed as categories whose sets of morphisms are
enriched with additional M-structure, and whose identities and compositions respect that structure. For example, a
Prost-enriched category is a category along with a preorder on each set Hom(A,B) with the property that f ≤ f ′

and g ≤ g′ implies f ; g ≤ f ′ ; g′. Thus a Prost-enriched category is a 2-thin 2-category. In fact, a 2-category is simply
a Cat-enriched category: a 2-category is a category along with a category of 2-cells on each set Hom(A,B) of 1-cells,
and with a notion of horizontal composition between connected hom-sets that respects the (vertical) categorical
structure on these hom-sets. More generally, if we define Cat0 as an 1-enriched category (i.e. simply a set), and
Catn+1 as a Catn-enriched category, then we arrive at the standard definitions of sets, categories, 2-categories,
3-categories, and so on. Interestingly, if we change the base case of the above series to B-enriched categories, where
B is the multiorder on the booleans given by b1 ∧ · · · ∧ bn =⇒ b′, then we arrive at the sequence of preordered sets,
preordered categories, preordered 2-categories, and so on.

Definition (Abelian Group). An abelian group, i.e. a commutative group, is a group 〈A, 0,+,−〉 with the property
that a+ b equals b+ a for all a and b in A. Ab is the multicategory of abelian groups and multilinear functions.

Definition (Preadditive Category). A preadditive category is an Ab-enriched category. That is, it is a category
along with an abelian group structure 〈Hom(A,B), 0,+,−〉 on each hom-set such that the following properties hold:

0 ; f = 0 = f ; 0 (f + f ′) ; g = (f ; g) + (f ′ ; g) f ;(g + g′) = (f ; g) + (f ; g′)

Example. Ab is the Ab-enriched category in which, for abelian groups 〈A, 0,+,−〉 and 〈B, 0,+,−〉, the group
structure on the set of group homomorphisms from 〈A, 0,+,−〉 to 〈B, 0,+,−〉 is given by defining 0 as λa ∈ A. 0, by
defining f + g as λa ∈ A. f(a) + g(a), and by defining −f as λa ∈ A.−f(a).

Theorem (Finite Biproducts). An object is a product of a list of objects A1, . . . , An if and only if it is their coproduct.

Proof. We prove only one direction since the other follows the exact some reasoning dualized. Suppose {P πi−→ Ai}i∈{1,...,n}
is a product. Then define κi : Ai → P as the unique morphism with the property that κi ;πj equals 0 when i 6= j
and idAi

when i = j. Given a sink {fi : Ai → B}i∈{1,...,n}, define [fi]i∈{1...n} : P → B as
∑
i∈{1,...,n} πi ; fi. This

satisfies the required property as shown below:

∀j. κj ;[fi]i∈{1...n} = κj ;
∑
i πi ; fi =

∑
i κj ;πi ; fi = (idAi

; fi) +
(∑

i|i 6=j 0 ; fi

)
= fi +

∑
i|i 6=j 0 = fi + 0 = fi(

∀j. (
∑
i πi ;κi) ;πj =

∑
i πi ;κi ;πj = (πj ; idAj

) +
(∑

i|i 6=j πi ; 0
)

= πj + 0 = πj = idP ;πj

)
=⇒ (

∑
i πi ;κi) = idP

∀g : P → B. (∀i. κi ; g = fi) =⇒ g = idP ; g = (
∑
i πi ;κi) ; g =

∑
i πi ;κi ; g =

∑
i πi ; fi = [fi]i∈{1...n}
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Remark. Note that the above proof actually applies to any CommMon-enriched category.

Definition (Additive Category). An additive category is a preadditive category with all finite (co/bi)products.

Example. Ab is also an additive category. The zero group is the singleton group. The biproduct of 〈A, 0,+,−〉
and 〈B, 0,+,−〉 is the set A×B with identity 〈0, 0〉, with 〈a, b〉+〈a′, b′〉 = 〈a+a′, b+b′〉, and with −〈a, b〉 = 〈−a,−b〉.

Example. Let R≥∞+≥ be the multiorder on the nonnegative extended reals R≥∞ given by r1 + · · · + rn ≥ r′.

An R≥∞+≥ -enriched category is a Lawvere metric space. The objects are the points of the space. The R≥∞+≥ -
object Hom(A,B) is a nonnegative extended real number representing the distance from A to B. The nullary
multimorphism idA : [ ]→ Hom(A,A) is a proof that 0 is greater than or equal to the distance from A to itself. The
binary multimorphism compA,B,C : [Hom(A,B),Hom(B,C)]→ Hom(A,C) is a proof that the distance from A to B
plus the distance from B to C is greater than or equal to the distance from A to C. The identity and associativity
requirements hold trivially due to thinness of R≥∞+≥ .

Definition (Enriched Category over a Multicategory). Given a colax/weak/strict monoidal category M there is a
corresponding multicategory with the same objects and with multimorphisms from [A1, . . . , An] to B being morphisms
of M from A1 ⊗ · · · ⊗ An to B. A category enriched over the monoidal category M is a category enriched over the
multicategory corresponding to M.

Definition (Suspension). Given a multicategory M and a set C0 “of 0-cells”, the Path-multicategory SuspC0(M) is
comprised of the following:

0-Cells A 0-cell is an element of C0

Vertical 1-Cells, Identities, and Compositions There is one vertical cell for each 0-cell, which is in turn the
identity on that 0-cell, and which makes composition trivial

Horizontal 1-Cells For every pair of 0-cells A and A′, there is one horizontal 1-cell from A to A′ for each
object M of M

2-Cells, Identities, and Compositions A 2-cell from A0
M1−−→ A1 . . . An−1

Mn−−→ An to A0
M ′−−→ An (necessarily

along vidA0
and vidAn

) is a multimorphism m : [M1, . . . ,Mn]→M ′ of M, and 2-identities and 2-compositions
are inherited from M in the obvious manner

Definition (Enriched Category over a Path-Multicategory). Given a Path-multicategory P, a P-enriched category
is a set C0 and a Path-multifunctor C : SuspC0(1)→ P.

Remark. Just as an enrichment over a monoidal category is a special case of an enrichment over a multicategory,
an enrichment over a multicategory M is simply an enrichment over the Path-multicategory Susp

1
(M). In general,

Path-multicategories are considered the most natural setting for enriched categories. But this construction also
suggests another path for generalization, which we define next.

Definition (Enriched Classified Category over a Path-Multicategory). Given a multicategory E and a Path-multi-
category P, a P-enriched E-classified category is a set C0 and a Path-multifunctor C : SuspC0(E)→ P.

Definition (Classified Category). Given a multicategory E, an E-classified category is a set Ob “of objects” and a
Path-multifunctor C : SuspC0(E)→ Susp

1
(Set).

Example. Suppose E is a multipreorder describing an effect system, so that its objects are effects ε and its morphisms
exist when a sequence of effects compose into a particular effect. Then a E-classified category is essentially a E-
effectful language. Its objects can be viewed as types τ . For every pair of types τ and τ ′ and every effect ε, it
assigns a set of morphisms, i.e. programs with effect ε, from τ to τ ′. And for every sequence of effectful programs
f1 : τ0

ε1−→ τ1, . . . , fn : τn−1
εn−→ τn and effect ε′ such that [ε1, . . . , εn] ≤ ε′, it assigns a composed ε′-effectful

program f1 ; . . . ; fn : τ0
ε′−→ τn. In particular, for every type τ and effect ε such that [ ] ≤ ε, it assigns an identity

program with effect ε from τ to τ . Lastly, composition is well-behaved in the sense we are used to from normal
categories.
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Remark. Given a function F0 : C0 → C′0 and a multifunctor FE : E → E′ there is an obvious Path-multi-
functor FS(F0, FE) : SuspC0(E)→ SuspC′0(E′). Thus we can define an enriched classified functor from a P-enriched

E-classified category 〈C0,C : SuspC0(E)→ P〉 to a P’-enriched E’-classified category 〈C′0,C′ : SuspC′0(E′)→ P′〉 as

a function F0 : C0 → C′0 along with a multifunctor FE : E → E′, a Path-multifunctor FP : P → P′, and a natural
transformation of Path-multifunctors Fθ : C ;FP ⇒ FS(F0, FE) ; C′ : SpanC0(E) → P′. Note that when FE is the
identity multifunctor on E, then we more specifically call an enriched classified functor E-classified, and/or when
FP is the identity Path-multifunctor on P, then enriched classified functors are more specifically called P-enriched.

Remark. Because enriched classified functors can change enrichment and classification schemes, the structure of
enriched classified natural transformations is complex. However, when the enrichment and classification scheme are
fixed, i.e. we have a P-enriched E-classified natural transformation, then the structure can be concisely described,
as we show on the next page. But even then, composition of natural transformations is non-trivial. Surprisingly,
the seemingly more complex horizontal composition of natural transformations arises naturally, whereas vertical
composition does not always exist. Fortunately, if the classification scheme E has a unit object, i.e. a “pure”
effect, then one can generalize the familiar definition of vertical composition to P-enriched E-classified natural
transformations.

Example. Just as a Lawvere metric space is an R≥∞+≥ -enriched category, a metric map is an R≥∞+≥ -enriched functor,

and a 2-cell in LMet is an R≥∞+≥ -enriched natural transformation (defined on the next page).

Definition (P-Enriched E-Classified Category C). This is simply a more explicit version of the earlier definition:

Objects A set of C0 of objects, and for every C in C0 a 0-cell C(C) of P

Hom-Sets For every pair of objects C and C ′ in C0 and object ε of E, a horizontal 1-cell Cε(C,C
′) : C(C)→ C(C ′) of P

Compositions For every alternating series C0
ε1−→ C1 . . . Cn−1

εn−→ Cn of objects in C0 and objects of E, and for
every multimorphism e : [ε1, . . . , εn]→ ε′ of E, a 2-cell of P as follows:

C(C0) C(C1) . . . C(Cn−1) C(Cn)

C(C0) C(Cn)

Cε1(C0, C1) Cεn(Cn−1, Cn)

Cε′(C0, Cn)

idC(C0) idC(Cn)CC0,...,Cn
(e)

Identity For every pair of objects C and C ′ in C0 and object ε of E,

C(C) C(C ′)

C(C) C(C ′)

Cε(C,C
′)

Cε(C,C
′)

idC(C) idC(C′)idCε(C,C′) equals

C(C) C(C ′)

C(C) C(C ′)

Cε(C,C
′)

Cε(C,C
′)

idC(C) idC(C′)CC,C′(idε)

Associativity For every applicable tree (with most labels omitted for space),

. . .

CC1
0 ,C

1
1 ,...,C

m1
1

(e1)

. . .

C
C

mn−1
n−1 ,C1

n,...,C
mn
n

(en)

. . .

. . .

...

CC1
0 ,C

m1
1 ,...,Cmn

n
(e′)

equals

. . . . . .. . .

C
C1

0 ,C
1
1 ,...,C

m1
1 ,...,C

mn−1
n−1 ,C1

n,...,C
mn
n

(a
e1,...,en

e′
)
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Definition (P-Enriched E-Classified Functor). This is simply a more explicit version of the earlier definition of
P-enriched E-classified functor F from a P-enriched E-classified category C with object set C0 to a P-enriched
E-classified category C′ with object set C′0:

Objects For each object C in C0, an object F (C) in C′0
Vertical 1-Cells For each object C in C0, a vertical 1-cell fC : C(C)→ C′(F (C)) of P

2-Cells For each pair of objects C and C ′ in C0 and object ε of E, a 2-cell of P

C′(F (C)) C′(F (C ′))

C(C) C(C ′)

fC fC′

Cε(C,C
′)

C′ε(F (C), F (C ′))

Fε(C,C
′)

Preservation of Compositions For every alternating series C0
ε1−→ C1 . . . Cn−1

εn−→ Cn of objects in C0 and
objects of E, and for every multimorphism e : [ε1, . . . , εn]→ ε′,

C(C0) C(C1)

C′(F (C0)) C′(F (C1))

Cε1(C0, C1)

C′ε1(F (C0), F (C1))

fC0 fC1Fε1(C0, C1)

C(Cn−1) C(Cn)

C′(F (Cn−1)) C′(F (Cn))

Cεn(Cn−1, Cn)

C′εn(F (Cn−1), F (Cn))

fCn−1 fCnFεn(Cn−1, Cn)
. . .

. . .

...

C′(F (C0)) C′(F (Cn))
C′ε′(F (C0), F (Cn))

id idC′F (C0),...,F (Cn)
(e)

equals

C(C0) C(C1)

C(C0)

Cε1(C0, C1)

id

C(Cn−1) C(Cn)

C(Cn)

Cεn(Cn−1, Cn)

id
. . .

Cε′(C0, Cn)

CC0,...,Cn
(e)

C′(F (C0)) C′(F (Cn))
C′ε′(F (C0), F (Cn))

fC0 fCn
Fε′(C0, Cn)

Definition (P-Enriched E-Classified Natural Transformation). A P-enriched E-classified natural transformation α
from a P-enriched E-classified functor F to a P-enriched E-classified functor G both from a P-enriched E-classified
category C with object set C0 to a P-enriched E-classified category C′ with object set C′0 is comprised of the following:

2-Cells For each pair of objects C and C ′ in C0 and object ε of E, a 2-cell of P

F (C) G(C ′)

C C ′
fC gC′

Cε(C,C
′)

C′ε(F (C), G(C ′))

αε(C,C
′)

Naturality For every alternating series C0
ε1−→ C1 . . . Cn−1

εn−→ Cn of objects in C0 and objects of E, and for
every multimorphism e : [ε1, . . . , εn]→ ε′ and index i in {1, . . . , n},

C(C0) C(C1)

C′(F (C0)) C′(F (C1))

Cε1(C0, C1)

fC0
fC1Fε1(C0, C1)

C(Cn−1) C(Cn)

C′(G(Cn−1)) C′(G(Cn))

Cεn(Cn−1, Cn)

gCn−1 gCnFεn(Cn−1, Cn)

C(Ci−1) C(Ci). . .
Cε(Ci−1, Ci)

. . .

C′(F (Ci−1)) C′(G(Ci)). . . . . .

...
fCi−1 αεi(Ci−1, Ci) gCi

...

C′(F (C0)) C′(G(Cn))
C′ε′(F (C0), G(Cn))

id idC′F (C0),...,F (Ci−1),G(Ci),G(Cn)
(e)

equals

C(C0) C(C1)

C(C0)

Cε1(C0, C1)

id

C(Cn−1) C(Cn)

C(Cn)

Cεn(Cn−1, Cn)

id

C(Ci−1) C(Ci). . .
Cεi(Ci−1, Ci)

. . .
CC0,...,Cn(e)

C′(F (C0)) C′(G(Cn))
C′ε′(F (C0), G(Cn))

fC0
gCnαε′(C0, Cn)
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Definition (Transformations with Changes of Enrichment and Classification). Given a P-enriched E-classified cat-
egory 〈C0,C : SuspC0(E) → P〉 and a P’-enriched E’-classified category 〈C′0,C′ : SuspC′0(E′) → P′〉, define the lax

relational Path-multicategory Trans(〈C0,C〉, 〈C′0,C′〉) as follows:

Objects An object M assigns to each object P of P an object M(P ′) of P′, and to each object C in C0 an
object M(C) in C0 and a vertical 1-cell mC : M(C(C))→ C′(M(C)) of P′.

Vertical 1-Cells A vertical 1-cell F from M to M ′ assigns to each vertical 1-cell v : P → P ′ of P a vertical
1-cell F (v) : M(P ) → M ′(P ′) of P′, such that for every object C in C0, the object M(C) equals M ′(C) in C′0
and the vertical morphism mC equals F (idC(C)) ;m′C in P′.

Horizontal 1-Cells A horizontal 1-cell T from M to M ′ assigns to each horizontal 1-cell h : P → P ′ of P a
horizontal 1-cell T (h) : M(P ) → M ′(P ′) of P′, and to each object ε of E an object T (ε) of E′, and to each

pair of objects C and C ′ in C0 and object ε of E a 2-cell of P′
C′(M(C)) C′(M ′(C ′))

M(C(C)) M ′(C(C ′))

mC m′C′

T (Cε(C,C
′))

C′T (ε)(M(C),M ′(C ′))

tε(C,C
′) .

2-Cells A 2-cell Θ from M0 T 1

−−→ M1 · · ·Mn−1 Tn

−−→ Mn to M ′
T ′−→ M ′′ along F ′ and F ′′ assigns to each 2-

cell α ∈ Facev′,v′′([h1, . . . , hn], h′) of P a 2-cell Θ(α) ∈ FaceF ′(v′),F ′′(v′′)([T
1(h1), . . . , Tn(hn)], T ′(h′)) of P′, and

to each multimorphism e : [ε1, . . . , εn]→ ε′ of E a multimorphism Θ(e) : [T 1(ε1), . . . , Tn(εn)] → T ′(ε′) of E′,
such that for every list C0, . . . , Cn of objects in C0 and every multimorphism e : [ε1, . . . , εn] → ε′ of E the
following holds in P′:

M0(C(C0)) M1(C(C1))

C′(M0(C0)) C′(M1(C1))

T 1(Cε1(C0, C1))

m0
C0

m1
C1

t1ε1(C0, C1)

Mn−1(C(Cn−1)) Mn(C(Cn))

C′(Mn−1(Cn−1)) C′(Mn(Cn))

Tn(Cεn(Cn−1, Cn))

mn−1
Cn−1

mn
Cn

tnεn(Cn−1, Cn)

. . .

. . .

...

C′(M ′(C0)) C′(M ′′(Cn))
C′T ′(ε′)(M

′(C0),M ′′(Cn))

C′M0(C0),...,Mn(Cn)
(Θ(e))

equals

M0(C(C0)) M1(C(C1))

M ′(C(C0))

T 1(Cε1(C0, C1))

F ′(idC(C0))

Mn−1(C(Cn−1)) Mn(C(Cn))

M ′′(C(Cn))

Tn(Cεn(Cn−1, Cn))

F ′′(idC(Cn))

. . .

Θ(CC0,...,Cn(e))

C′(M ′(C0)) C′(M ′′(Cn))
C′T ′(ε′)(M

′(C0),M ′′(Cn))

m′C0
m′′Cn

t′ε′(C0, Cn)

Vertical Composition A chain of vertical 1-cells M0
F1−→ M1 · · ·Mn−1

Fn−−→ Mn composes to a vertical 1-

cell M0
F ′−→ Mn when every chain of vertical 1-cells P0

v1−→ P1 · · ·Pn−1
vn−→ Pn in P has the property that the

vertical 1-cell F1(v1) ; . . . ;Fn(vn) equals F ′(v1 ; . . . ; vn) in P′.

2-Composition Since we have not developed the appropriate notation, we describe this informally. It is the
obvious adaptation of the concept employed above for vertical composition. A pasting diagram of 2-cells ~Θ
composes to a 2-cell Θ′ when every similarly shaped pasting diagram of 2-cells ~α in P has the property that the
composition of the corresponding mapping, i.e.

a ~Θ(~α), equals the corresponding mapping of the composition,
i.e. Θ′(

a
~α), in P′ and every similarly shaped multigraph of multimorphisms ~e in E has the property that the

composition of the corresponding mapping, i.e.
a ~Θ(~e), equals the corresponding mapping of the composition,

i.e. Θ′(
a
~e), in E′.

Remark. A 2-cell is an identity if it maps identity 2-cells of P to identity 2-cells of P′ and identity multimorphisms
of E to identity multimorphisms of E′.
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Definition (Enriched Classified Functor). Consider what an internal monoid of Trans(〈C0,C〉, 〈C′0,C′〉) is com-
prised of: a 0-cell M , a vertical 1-cell F on that 0-cell, a horizontal 1-cell T on that 0-cell, and a 2-cell Θn

from [T, . . . (n times)] to T along F and F for each n in N, altogether satisfying certain compositional proper-
ties. These various components can be broken down into mappings from P to P′, mappings from E to E′, and
a mapping from C0 to C′0 and corresponding transformations in P′. In fact, the compositional properties exactly
describe the requirements for the mappings from P to P′ to collectively form a Path-multifunctor FP , and for the
mappings from E to E′ to collectively form a multifunctor FE , which the mapping F0 from C0 to C′0 extends to a Path-
multifunctor FS(F0, FE) from SuspC0(E) to SuspC′0(E′), and for the transformations to collectively form a natural

transformation Fθ from the resulting Path-multifunctor C ;FP to the resulting Path-multifunctor FS(F0, FE) ; C′. In
other words, an internal monoid of Trans(〈C0,C〉, 〈C′0,C′〉) is precisely an enriched classified functor from 〈C0,C〉
to 〈C′0,C′〉.

Definition (Enriched Classified Natural Transformation). An enriched classified natural transformation from an
enriched classified functor to another is an internal bimodule of Trans(〈C0,C〉, 〈C′0,C′〉) between the internal monoids
corresponding to the enriched classified functors.

Example. Let P and P′ both be Set, and consider the cases where FP above is the identity. In other words,
consider only classified categories. Let E be 1, so that an E-classified category is simply a category. Let E′ be a
multipreorder with a unit, i.e. an effect system with a pure effect. Let C′ be a E′-classified category, i.e. an effectful
sequential language. Let C be the category of pure-classified morphisms of E′ (which forms a category because a unit
of a multicategory is an internal monoid of that multicategory). Then the inclusion of C into C′ forms a classified
functor I that changes classification from 1 to E′ by mapping the unique object in 1 to the unit of E′. Suppose
furthermore that an object ε of E′ represents a producer effect of C′. Then there is an endofunctor Fε on C and a
family of ε-classified morphisms {execε : Fετ

ε−→ τ ∈ C′}τ∈C that forms a classified transformation from Fε ; I to I.
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