Determined Relations

Ross Tate

May 6, 2018

Definition. Let Φ be a collection of "abstract symbols" each paired with a natural number n indicating the arity of the symbol. For example, $\Phi=\{\leq: 2\}$ has one abstract symbol, \leq, of arity 2 , indicating that there should be a relation \leq that is binary. Let Δ be a collection of "determinisms", each of which is an abstract symbol $R: n$ in Φ and a subset of $\{1, \ldots, n\}$. For example, $\Phi=\{+\sim: 3\}$ and $\Delta=\{+\sim:\{1,2\}\}$ indicates that there should be a ternary relation $+=$ whose remaining arguments (i.e. its third argument) are uniquely determined by its first and second arguments together.

Given a Φ and Δ, the construct $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ is comprised of the following:
Object An object is a set A along with, for each symbol-arity pair $R: n \in \Phi$, a relation $R_{A} \subseteq A^{n}$ such that, for each determinism $R: J \in \Delta$, given any two n-tuples \vec{a} and \vec{a}^{\prime} in R_{A}, if $\forall j \in J . a_{j}=a_{j}^{\prime}$ then $\vec{a}=\vec{a}^{\prime}$.

Morphism A morphism from $\left\langle A,\left\{R_{A}\right\}_{R: n \in \Phi}\right\rangle$ to $\left\langle B,\left\{R_{B}\right\}_{R: n \in \Phi}\right\rangle$ is a function $f: A \rightarrow B$ such that, for every symbol-arity pair $R: n \in \Phi$, given any n-tuple \vec{a} in R_{A}, the n-tuple $f(\vec{a})$ is in R_{B} (where $f(\vec{a})$ is shorthand for $\left.\left\langle f\left(a_{i}\right)\right\rangle_{i \in\{1, \ldots, n\}}\right)$.

Example. The construct $\boldsymbol{\operatorname { R e l }}(\leq: 2,+\sim: 3) \boldsymbol{\operatorname { D e t }}(+\sim:\{1,2\})$ is more explicitly comprised of the following:
Object An object is a set A along with a binary relation $\leq \subseteq A \times A$ and a ternary relation $+\sim \subseteq A \times A \times A$ such that whenever $a_{1}+a_{2} \sim a_{3}$ and $a_{1}^{\prime}+a_{2}^{\prime} \sim a_{3}^{\prime}$ both hold, then if a_{1} equals a_{1}^{\prime} and a_{2} equals a_{2}^{\prime} then a_{3} equals a_{3}^{\prime}. In other words, whenever $a_{1}+a_{2} \sim a_{3}$ and $a_{1}+a_{2} \sim a_{3}^{\prime}$ both hold, then a_{3} equals a_{3}^{\prime}.

Morphism A morphism from $\langle A, \leq,+\sim\rangle$ to $\langle B, \leq,+\sim\rangle$ is a function $f: A \rightarrow B$ such that, for all a_{1} and a_{2} in A, if $a_{1} \leq a_{2}$ holds then $f\left(a_{1}\right) \leq f\left(a_{2}\right)$ holds, and for all a_{1}, a_{2}, and a_{3} in A, if $a_{1}+a_{2} \sim a_{3}$ holds then $f\left(a_{1}\right)+f\left(a_{2}\right) \sim f\left(a_{3}\right)$ holds.

Remark. The category $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ is an epi-implicational subcategory of $\operatorname{Rel}(\Phi)$. In particular, there is one epi-implication for each determinism in Δ. For example, the epi-implication in $\boldsymbol{\operatorname { R e l }}(+\sim: 3)$ for the determinism $+\sim:\{1,2\}$ is the following epimorphism:

$$
\left\langle\left\{x_{1}, x_{2}, x_{3}, x_{3}^{\prime}\right\},\left\{\left\langle x_{1}, x_{2}, x_{3}\right\rangle,\left\langle x_{1}, x_{2}, x_{3}^{\prime}\right\rangle\right\}\right\rangle \xrightarrow{x_{3}^{\prime} \mapsto x_{3}}\left\langle\left\{x_{1}, x_{2}, x_{3}\right\},\left\{\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right\}\right\rangle
$$

Consequently, $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ has an $\left.\left(\mathrm{Epi}_{I} \text {, Initial Mono-Source }\right)_{I}\right)$-factorization structure, meaning it has a factorization structure between its morphisms that are epic in $\boldsymbol{\operatorname { R e l }}(\Phi)$ and its sources that are initial and monic in $\operatorname{Rel}(\Phi)$.

Note, however, that there are morphisms that are epic in $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ but not epic in $\boldsymbol{\operatorname { R e l }}(\Phi)$. One particularly important example is the following morphism in $\boldsymbol{\operatorname { R e l }}(+\sim: 3) \boldsymbol{\operatorname { D e t }}(\{1,2\} \stackrel{+\sim}{\longmapsto}\{3\})$:

$$
\left\langle\left\{x_{1}, x_{2}\right\}, \varnothing\right\rangle \xrightarrow{\text { total }}\left\langle\left\{x_{1}, x_{2}, x_{3}\right\},\left\{\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right\}\right\rangle
$$

Given any morphism f from $\left\langle\left\{x_{1}, x_{2}, x_{3}\right\},\left\{\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right\}\right\rangle$ to some other object A in $\boldsymbol{\operatorname { R e l }}(+\sim: 3) \operatorname{Det}(+\sim:\{1,2\})$, its mapping of x_{3} is determined uniquely by its mapping of x_{1} and x_{2} because f must be relation-preserving and, in order for A to be contained in $\operatorname{Rel}(+\sim: 3) \boldsymbol{\operatorname { D e t }}(+\sim:\{1,2\})$, there can be at most one element a_{3} of A such that $f\left(x_{1}\right)+f\left(x_{2}\right) \sim a_{3}$ holds. Thus total is epic in $\boldsymbol{\operatorname { R e l }}(+\sim: 3) \boldsymbol{\operatorname { D e t }}(+\sim:\{1,2\})$. However, this same reasoning does not apply to $\boldsymbol{\operatorname { R e l }}(+\sim: 3)$, and it is easy to construct a counterexample showing that total is not epic in $\boldsymbol{\operatorname { R e l }}(+\sim: 3)$. This means that total belongs to Epi but not to Epi ${ }_{I}$.

This fact is unfortunate because total encodes the implication that $+\sim$ must be total. That is, the implicational subcategory of $\boldsymbol{\operatorname { R e l }}(+\sim: 3) \boldsymbol{\operatorname { D e t }}(\{1,2\} \stackrel{+\sim}{\longrightarrow}\{3\})$ satisfying total is the subcategory of $\boldsymbol{\operatorname { R e l }}(+\sim: 3)$ comprised of the objects whose $+\sim$ relation is determined and total, i.e. specifies a function. This implicational subcategory is concretely isomorphic to Magma, also known as $\operatorname{Alg}(2)$, so if we can show that total belongs to an \mathcal{E} of some factorization structure on $\boldsymbol{\operatorname { R e l }}(+\sim: 3) \operatorname{Det}(+\sim:\{1,2\})$, then we will have a nicely-behaved unification of relations and algebras that simply views algebraic operators as total and determined relations.

Theorem. If Δ is a set (rather than an arbitrary-sized collection), then the category $\boldsymbol{\operatorname { R e l }}(\Phi) \boldsymbol{\operatorname { D e t }}(\Delta)$ has an (Epi, Extremal Mono-Source)-factorization structure.
Proof. Unfortunately the collection Extremal Mono-Source for $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ is larger than Initial Mono-Source U, so we cannot use the proof from the homework. While we could use factorization structures on functors (rather than categories), here we will prove it from first principles rather than introduce yet another concept.

For our first step, we classify (without proof) the epimorphisms of $\boldsymbol{\operatorname { R e l }}(\Phi) \operatorname{Det}(\Delta)$. A morphism f from an object $\left\langle A,\left\{R_{A}\right\}_{R: n \in \Phi}\right\rangle$ to an object $\left\langle B,\left\{R_{B}\right\}_{R: n \in \Phi}\right\rangle$ is epic in $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ if and only if for every element b in B there is a proof that f generates ${ }_{\left\{R_{B}\right\}_{R: n} \in \Phi}^{\Delta} b$ built from the following inference rules:

For our second step, we classify (without proof) the extremal mono-sources of $\boldsymbol{\operatorname { R e l }}(\Phi) \boldsymbol{\operatorname { D e t }}(\Delta)$. A source $\left\{f_{i}\right\}_{i \in I}$ from an object $\left\langle A,\left\{R_{A}\right\}_{R: n \in \Phi}\right\rangle$ to objects $\left\langle B_{i},\left\{R_{i}\right\}_{R: n \in \Phi}\right\rangle$ is an extremal mono-source in $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ if and only if the following three properties hold:

Mono $\forall a, a^{\prime} \in A$. $\left(\forall i \in I . f_{i}(a)=f_{i}\left(a^{\prime}\right)\right) \Longrightarrow a=a^{\prime}$
Initial $\forall R: n \in \Phi . \forall a_{1}, \ldots, a_{n} \in A .\left(\forall i \in I .\left\langle f_{i}\left(a_{1}\right), \ldots, f_{i}\left(a_{n}\right)\right\rangle \in R_{i}\right) \Longrightarrow\left\langle a_{1}, \ldots, a_{n}\right\rangle \in R_{A}$
Extremal $\begin{aligned} \forall R: n \in \Phi . \forall R: J \in \Delta . \\ \left(\forall i \in I . \exists\left\langle b_{1}\right.\right.\end{aligned}, \forall a \in J \rightarrow A$.

$$
\left(\forall i \in I . \exists\left\langle b_{1}, \ldots, b_{n}\right\rangle \in R_{i} . \forall j \in J . f_{i}\left(a_{j}\right)=b_{j}\right) \Longrightarrow \exists\left\langle a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \in R_{A} . \forall j \in J . a_{j}=a_{j}^{\prime}
$$

For our third step, we construct factorizations of sources. To do so, we first define the set of "expressions with free variables A from determinisms Δ of $\Phi "$, which we can only do if Δ itself is a set. Define $\operatorname{Expr}_{\Delta}^{\Phi}(A)$ to be the smallest set with the following disjoint injective functions (i.e. constructors):
var $: A \hookrightarrow \operatorname{Expr}_{\Delta}^{\Phi}(A) \quad$ for each $R: n$ in $\Phi, R: J$ in Δ, and k in $\{1, \ldots n\}, \mathrm{op}_{k}^{R}:\left(J \rightarrow \operatorname{Expr}_{\Delta}^{\Phi}(A)\right) \hookrightarrow \operatorname{Expr}_{\Delta}^{\Phi}(A)$
Given a source $\left\{f_{i}\right\}_{i \in I}$ from an object $\left\langle A,\left\{R_{A}\right\}_{R: n \in \Phi}\right\rangle$ to objects $\left\langle B_{i},\left\{R_{i}\right\}_{R: n \in \Phi}\right\rangle$, for each i in I we inductively define the following $\stackrel{i}{\mapsto}$ relation between expressions $\operatorname{Expr}_{\Delta}^{\Phi}(A)$ and elements of B_{i} with the following inference rules:

\[

\]

Because every R_{i} satisfies the relevant determinisms in Δ, one can easily show that every $\stackrel{i}{\mapsto}$ relation is determined, meaning there is at most one $b \in B_{i}$ that a given expression maps to via $\stackrel{i}{\mapsto}$. However, the $\stackrel{i}{\mapsto}$ relations are not necessarily total, and so we define E to be $\left\{e \in \operatorname{Expr}_{\Delta}^{\Phi}(A) \mid \forall i \in I . \exists b \in B_{i} . e \stackrel{i}{\mapsto} b\right\}$. By definition, every $\stackrel{i}{\mapsto}$ relation is total on this subset, and since every $\stackrel{i}{\mapsto}$ relation is also determined, they each specify a function, say g_{i}, from E to B_{i}. Thus we have a source $\left\{g_{i}: E \rightarrow B_{i}\right\}_{i \in I}$ in Set. Let $\left(e: E \rightarrow Q,\left\{m_{i}: Q \rightarrow B_{i}\right\}_{i \in I}\right)$ be its (Epi, Mono-Source)factorization. The set Q will be the underlying set of our factorization of $\left\{f_{i}\right\}_{i \in I}$ in $\boldsymbol{\operatorname { R e l }}(\Phi) \operatorname{Det}(\Delta)$. In order to define the relations on Q we observe that the construct $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ is monotopological, and so for each $R: n$ in Φ we define R_{Q} to be the relation $\left\{\left\langle q_{1}, \ldots, q_{n}\right\rangle \mid \forall i \in I .\left\langle m_{i}\left(q_{1}\right), \ldots, m_{i}\left(q_{n}\right)\right\rangle \in R_{i}\right\}$, which can easily be shown to satisfy the relevant determinisms in Δ because every R_{i} does. From the constructions of E, of $\left\{m_{i}\right\}_{i \in I}$, and of $\left\{R_{Q}\right\}_{R: n \in \Phi}$, one can easily show that the source $\left\{m_{i}:\left\langle Q,\left\{R_{Q}\right\}_{R: n \in \Phi}\right\rangle \rightarrow\left\langle B_{i},\left\{R_{i}\right\}_{R: n \in \Phi}\right\rangle\right\}_{i \in I}$ is an extremal mono-source in $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$. Lastly, it is easy to prove that every expression of the form $\operatorname{var}(a)$ belongs to the subset E, so there is a function from A to Q given by $a \mapsto e(\operatorname{var}(a))$. It is furthermore easy to prove that this function lifts to a morphism from $\left\langle A,\left\{R_{A}\right\}_{R: n \in \Phi}\right\rangle$ to $\left\langle Q,\left\{R_{Q}\right\}_{R: n \in \Phi}\right\rangle$, and additionally that this morphism is epic in $\operatorname{Rel}(\Phi) \operatorname{Det}(\Delta)$ due to the constructions of E, of e, and of $\left\{R_{Q}\right\}_{R: n \in \Phi}$. And clearly this morphism has the property that, when composed with m_{i} for any i in I, results in f_{i}.

For our third step, we construct unique diagonalizations. Suppose we are given an epimorphism $e: A \rightarrow B$, a source $\left\{g_{i}: B \rightarrow D_{i}\right\}_{i \in I}$, a morphism $f: B \rightarrow C$, and an extremal mono-source $\left\{m_{i}: C \rightarrow D_{i}\right\}_{i \in I}$ with the property that $e ; g_{i}$ equals $f ; m_{i}$ for every i in I. We need to construct a morphism $d: B \rightarrow C$ such that $e ; d$ equals f and $d ; m_{i}$ equals f_{i} for every i in I. Any such morphism is necessarily unique because e is an epimorphism. The mapping $d(b)=c$ is defined to hold whenever $\forall i \in I . f_{i}(b)=m_{i}(c)$ holds. This mapping is total by induction on the proof that e generates ${ }_{\left\{R_{B}\right\}_{R: n \in \Phi}}^{\Delta} b$ for all b in B, using the fact that $\left\{f_{i}\right\}_{i \in I}$ is relation-preserving and $\left\{m_{i}\right\}_{i \in I}$ is extremal; the mapping is determined because the relations in C satisfy the determinisms in Δ and $\left\{m_{i}\right\}_{i \in I}$ is a mono-source; and the mapping is relation-preserving because $\left\{m_{i}\right\}_{i \in I}$ is initial.

