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Definition. Let Φ be a collection of “abstract symbols” each paired with a natural number n indicating the arity
of the symbol. For example, Φ = {≤: 2} has one abstract symbol, ≤, of arity 2, indicating that there should be a
relation ≤ that is binary. Let ∆ be a collection of “determinisms”, each of which is an abstract symbol R : n in Φ
and a subset of {1, . . . , n}. For example, Φ = {+∼ : 3} and ∆ = {+∼ : {1, 2}} indicates that there should be a
ternary relation += whose remaining arguments (i.e. its third argument) are uniquely determined by its first and
second arguments together.

Given a Φ and ∆, the construct Rel(Φ)Det(∆) is comprised of the following:

Object An object is a set A along with, for each symbol-arity pair R : n ∈ Φ, a relation RA ⊆ An such that, for
each determinism R : J ∈ ∆, given any two n-tuples ~a and ~a′ in RA, if ∀j ∈ J. aj = a′j then ~a = ~a′.

Morphism A morphism from 〈A, {RA}R:n∈Φ〉 to 〈B, {RB}R:n∈Φ〉 is a function f : A → B such that, for every
symbol-arity pair R : n ∈ Φ, given any n-tuple ~a in RA, the n-tuple f(~a) is in RB (where f(~a) is shorthand
for 〈f(ai)〉i∈{1,...,n}).

Example. The construct Rel(≤ : 2,+∼ : 3)Det(+∼ : {1, 2}) is more explicitly comprised of the following:

Object An object is a set A along with a binary relation ≤ ⊆ A × A and a ternary relation +∼ ⊆ A × A × A
such that whenever a1 + a2 ∼ a3 and a′1 + a′2 ∼ a′3 both hold, then if a1 equals a′1 and a2 equals a′2 then a3

equals a′3. In other words, whenever a1 + a2 ∼ a3 and a1 + a2 ∼ a′3 both hold, then a3 equals a′3.

Morphism A morphism from 〈A,≤,+∼〉 to 〈B,≤,+∼〉 is a function f : A → B such that, for all a1 and a2

in A, if a1 ≤ a2 holds then f(a1) ≤ f(a2) holds, and for all a1, a2, and a3 in A, if a1 + a2 ∼ a3 holds then
f(a1) + f(a2) ∼ f(a3) holds.

Remark. The category Rel(Φ)Det(∆) is an epi-implicational subcategory of Rel(Φ). In particular, there is one
epi-implication for each determinism in ∆. For example, the epi-implication in Rel(+∼ : 3) for the determin-
ism +∼ : {1, 2} is the following epimorphism:

〈{x1, x2, x3, x
′
3}, {〈x1, x2, x3〉, 〈x1, x2, x

′
3〉}〉

x′
3 7→x3−−−−→ 〈{x1, x2, x3}, {〈x1, x2, x3〉}〉

Consequently, Rel(Φ)Det(∆) has an (EpiI , Initial Mono-SourceI)-factorization structure, meaning it has a factor-
ization structure between its morphisms that are epic in Rel(Φ) and its sources that are initial and monic in Rel(Φ).

Note, however, that there are morphisms that are epic in Rel(Φ)Det(∆) but not epic in Rel(Φ). One particularly

important example is the following morphism in Rel(+∼ : 3)Det({1, 2} +∼7−−→ {3}):

〈{x1, x2},∅〉
total−−→ 〈{x1, x2, x3}, {〈x1, x2, x3〉}〉

Given any morphism f from 〈{x1, x2, x3}, {〈x1, x2, x3〉}〉 to some other object A in Rel(+∼ : 3)Det(+∼ : {1, 2}),
its mapping of x3 is determined uniquely by its mapping of x1 and x2 because f must be relation-preserving and,
in order for A to be contained in Rel(+∼ : 3)Det(+∼ : {1, 2}), there can be at most one element a3 of A such that
f(x1) +f(x2) ∼ a3 holds. Thus total is epic in Rel(+∼ : 3)Det(+∼ : {1, 2}). However, this same reasoning does not
apply to Rel(+∼ : 3), and it is easy to construct a counterexample showing that total is not epic in Rel(+∼ : 3).
This means that total belongs to Epi but not to EpiI .

This fact is unfortunate because total encodes the implication that +∼ must be total. That is, the implicational

subcategory of Rel(+∼ : 3)Det({1, 2} +∼7−−→ {3}) satisfying total is the subcategory of Rel(+∼ : 3) comprised of
the objects whose +∼ relation is determined and total, i.e. specifies a function. This implicational subcategory is
concretely isomorphic to Magma, also known as Alg(2), so if we can show that total belongs to an E of some
factorization structure on Rel(+∼ : 3)Det(+∼ : {1, 2}), then we will have a nicely-behaved unification of relations
and algebras that simply views algebraic operators as total and determined relations.
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Theorem. If ∆ is a set (rather than an arbitrary-sized collection), then the category Rel(Φ)Det(∆) has an
(Epi,Extremal Mono-Source)-factorization structure.

Proof. Unfortunately the collection Extremal Mono-Source for Rel(Φ)Det(∆) is larger than Initial Mono-SourceU ,
so we cannot use the proof from the homework. While we could use factorization structures on functors (rather than
categories), here we will prove it from first principles rather than introduce yet another concept.

For our first step, we classify (without proof) the epimorphisms of Rel(Φ)Det(∆). A morphism f from an
object 〈A, {RA}R:n∈Φ〉 to an object 〈B, {RB}R:n∈Φ〉 is epic in Rel(Φ)Det(∆) if and only if for every element b in B
there is a proof that f generates∆{RB}R:n∈Φ

b built from the following inference rules:

a ∈ A

f generates∆{RB}R:n∈Φ
f(a)

R : n ∈ Φ 〈b1, . . . , bn〉 ∈ RB k ∈ {1, . . . , n}
R : J ∈ ∆ for all j in J , f generates∆{RB}R:n∈Φ

bj

f generates∆{RB}R:n∈Φ
bk

For our second step, we classify (without proof) the extremal mono-sources of Rel(Φ)Det(∆). A source {fi}i∈I
from an object 〈A, {RA}R:n∈Φ〉 to objects 〈Bi, {Ri}R:n∈Φ〉 is an extremal mono-source in Rel(Φ)Det(∆) if and only
if the following three properties hold:

Mono ∀a, a′ ∈ A. (∀i ∈ I. fi(a) = fi(a
′)) =⇒ a = a′

Initial ∀R : n ∈ Φ. ∀a1, . . . , an ∈ A. (∀i ∈ I. 〈fi(a1), . . . , fi(an)〉 ∈ Ri) =⇒ 〈a1, . . . , an〉 ∈ RA

Extremal
∀R : n ∈ Φ. ∀R : J ∈ ∆. ∀a ∈ J → A.

(∀i ∈ I. ∃〈b1, . . . , bn〉 ∈ Ri. ∀j ∈ J. fi(aj) = bj) =⇒ ∃〈a′1, . . . , a′n〉 ∈ RA. ∀j ∈ J. aj = a′j

For our third step, we construct factorizations of sources. To do so, we first define the set of “expressions with
free variables A from determinisms ∆ of Φ”, which we can only do if ∆ itself is a set. Define ExprΦ∆(A) to be the
smallest set with the following disjoint injective functions (i.e. constructors):

var : A ↪→ ExprΦ∆(A) for each R : n in Φ, R : J in ∆, and k in {1, . . . n}, opRk : (J → ExprΦ
∆(A)) ↪→ ExprΦ∆(A)

Given a source {fi}i∈I from an object 〈A, {RA}R:n∈Φ〉 to objects 〈Bi, {Ri}R:n∈Φ〉, for each i in I we inductively

define the following
i7−→ relation between expressions ExprΦ∆(A) and elements of Bi with the following inference rules:

a ∈ A

var(a)
i7−→ fi(a)

R : n ∈ Φ 〈b1, . . . , bn〉 ∈ Ri k ∈ {1, . . . , n}
R : J ∈ ∆ e : J → ExprΦ∆(A) for all j in J, ej

i7−→ bj

opRk (e)
i7−→ bk

Because every Ri satisfies the relevant determinisms in ∆, one can easily show that every
i7−→ relation is determined,

meaning there is at most one b ∈ Bi that a given expression maps to via
i7−→. However, the

i7−→ relations are not

necessarily total, and so we define E to be {e ∈ ExprΦ∆(A) | ∀i ∈ I. ∃b ∈ Bi. e
i7−→ b}. By definition, every

i7−→ relation

is total on this subset, and since every
i7−→ relation is also determined, they each specify a function, say gi, from E

to Bi. Thus we have a source {gi : E → Bi}i∈I in Set. Let (e : E → Q, {mi : Q→ Bi}i∈I) be its (Epi,Mono-Source)-
factorization. The set Q will be the underlying set of our factorization of {fi}i∈I in Rel(Φ)Det(∆). In order to
define the relations on Q we observe that the construct Rel(Φ)Det(∆) is monotopological, and so for each R : n
in Φ we define RQ to be the relation {〈q1, . . . , qn〉 | ∀i ∈ I. 〈mi(q1), . . . ,mi(qn)〉 ∈ Ri}, which can easily be shown
to satisfy the relevant determinisms in ∆ because every Ri does. From the constructions of E, of {mi}i∈I , and
of {RQ}R:n∈Φ, one can easily show that the source {mi : 〈Q, {RQ}R:n∈Φ〉 → 〈Bi, {Ri}R:n∈Φ〉}i∈I is an extremal
mono-source in Rel(Φ)Det(∆). Lastly, it is easy to prove that every expression of the form var(a) belongs to the
subset E, so there is a function from A to Q given by a 7→ e(var(a)). It is furthermore easy to prove that this
function lifts to a morphism from 〈A, {RA}R:n∈Φ〉 to 〈Q, {RQ}R:n∈Φ〉, and additionally that this morphism is epic
in Rel(Φ)Det(∆) due to the constructions of E, of e, and of {RQ}R:n∈Φ. And clearly this morphism has the property
that, when composed with mi for any i in I, results in fi.

For our third step, we construct unique diagonalizations. Suppose we are given an epimorphism e : A → B, a
source {gi : B → Di}i∈I , a morphism f : B → C, and an extremal mono-source {mi : C → Di}i∈I with the property
that e ; gi equals f ;mi for every i in I. We need to construct a morphism d : B → C such that e ; d equals f and
d ;mi equals fi for every i in I. Any such morphism is necessarily unique because e is an epimorphism. The mapping
d(b) = c is defined to hold whenever ∀i ∈ I. fi(b) = mi(c) holds. This mapping is total by induction on the proof
that e generates∆{RB}R:n∈Φ

b for all b in B, using the fact that {fi}i∈I is relation-preserving and {mi}i∈I is extremal;

the mapping is determined because the relations in C satisfy the determinisms in ∆ and {mi}i∈I is a mono-source;
and the mapping is relation-preserving because {mi}i∈I is initial.
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