Determined Relations

Ross Tate

May 6, 2018

Definition. Let Φ be a collection of "abstract symbols" each paired with a natural number n indicating the arity of the symbol. For example, $\Phi = \{\leq : 2\}$ has one abstract symbol, \leq , of arity 2, indicating that there should be a relation \leq that is binary. Let Δ be a collection of "determinisms", each of which is an abstract symbol R : n in Φ and a subset of $\{1, \ldots, n\}$. For example, $\Phi = \{+\sim : 3\}$ and $\Delta = \{+\sim : \{1, 2\}\}$ indicates that there should be a ternary relation += whose remaining arguments (i.e. its third argument) are uniquely determined by its first and second arguments together.

Given a Φ and Δ , the construct $\mathbf{Rel}(\Phi)\mathbf{Det}(\Delta)$ is comprised of the following:

- **Object** An object is a set A along with, for each symbol-arity pair $R : n \in \Phi$, a relation $R_A \subseteq A^n$ such that, for each determinism $R : J \in \Delta$, given any two *n*-tuples \vec{a} and \vec{a}' in R_A , if $\forall j \in J$. $a_j = a'_j$ then $\vec{a} = \vec{a}'$.
- **Morphism** A morphism from $\langle A, \{R_A\}_{R:n\in\Phi}\rangle$ to $\langle B, \{R_B\}_{R:n\in\Phi}\rangle$ is a function $f: A \to B$ such that, for every symbol-arity pair $R: n \in \Phi$, given any *n*-tuple \vec{a} in R_A , the *n*-tuple $f(\vec{a})$ is in R_B (where $f(\vec{a})$ is shorthand for $\langle f(a_i) \rangle_{i \in \{1,...,n\}}$).

Example. The construct $\operatorname{Rel}(\leq :2, +\sim :3)\operatorname{Det}(+\sim :\{1,2\})$ is more explicitly comprised of the following:

- **Object** An object is a set A along with a binary relation $\leq \subseteq A \times A$ and a ternary relation $+\sim \subseteq A \times A \times A$ such that whenever $a_1 + a_2 \sim a_3$ and $a'_1 + a'_2 \sim a'_3$ both hold, then if a_1 equals a'_1 and a_2 equals a'_2 then a_3 equals a'_3 . In other words, whenever $a_1 + a_2 \sim a_3$ and $a_1 + a_2 \sim a_3$ and $a_1 + a_2 \sim a'_3$ both hold, then a_3 equals a'_3 .
- **Morphism** A morphism from $\langle A, \leq, + \sim \rangle$ to $\langle B, \leq, + \sim \rangle$ is a function $f : A \to B$ such that, for all a_1 and a_2 in A, if $a_1 \leq a_2$ holds then $f(a_1) \leq f(a_2)$ holds, and for all a_1, a_2 , and a_3 in A, if $a_1 + a_2 \sim a_3$ holds then $f(a_1) + f(a_2) \sim f(a_3)$ holds.

Remark. The category $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$ is an epi-implicational subcategory of $\operatorname{Rel}(\Phi)$. In particular, there is one epi-implication for each determinism in Δ . For example, the epi-implication in $\operatorname{Rel}(+\sim : 3)$ for the determinism $+\sim : \{1,2\}$ is the following epimorphism:

$$\langle \{x_1, x_2, x_3, x_3'\}, \{\langle x_1, x_2, x_3 \rangle, \langle x_1, x_2, x_3' \rangle \} \rangle \xrightarrow{x_3' \mapsto x_3} \langle \{x_1, x_2, x_3\}, \{\langle x_1, x_2, x_3 \rangle \} \rangle$$

Consequently, $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$ has an $(\operatorname{Epi}_I, \operatorname{Initial Mono-Source}_I)$ -factorization structure, meaning it has a factorization structure between its morphisms that are epic in $\operatorname{Rel}(\Phi)$ and its sources that are initial and monic in $\operatorname{Rel}(\Phi)$.

Note, however, that there are morphisms that are epic in $\operatorname{\mathbf{Rel}}(\Phi)\operatorname{\mathbf{Det}}(\Delta)$ but *not* epic in $\operatorname{\mathbf{Rel}}(\Phi)$. One particularly important example is the following morphism in $\operatorname{\mathbf{Rel}}(+\sim:3)\operatorname{\mathbf{Det}}(\{1,2\} \xrightarrow{+\sim} \{3\})$:

$$\langle \{x_1, x_2\}, \varnothing \rangle \xrightarrow{\text{total}} \langle \{x_1, x_2, x_3\}, \{\langle x_1, x_2, x_3 \rangle \} \rangle$$

Given any morphism f from $\langle \{x_1, x_2, x_3\}, \{\langle x_1, x_2, x_3 \rangle \} \rangle$ to some other object A in $\operatorname{Rel}(+\sim : 3)\operatorname{Det}(+\sim : \{1, 2\})$, its mapping of x_3 is determined uniquely by its mapping of x_1 and x_2 because f must be relation-preserving and, in order for A to be contained in $\operatorname{Rel}(+\sim : 3)\operatorname{Det}(+\sim : \{1, 2\})$, there can be at most one element a_3 of A such that $f(x_1) + f(x_2) \sim a_3$ holds. Thus total is epic in $\operatorname{Rel}(+\sim : 3)\operatorname{Det}(+\sim : \{1, 2\})$. However, this same reasoning does not apply to $\operatorname{Rel}(+\sim : 3)$, and it is easy to construct a counterexample showing that total is not epic in $\operatorname{Rel}(+\sim : 3)$. This means that total belongs to Epi but *not* to Epi_I.

This fact is unfortunate because total encodes the implication that $+\sim$ must be total. That is, the implicational subcategory of $\operatorname{Rel}(+\sim:3)\operatorname{Det}(\{1,2\} \xrightarrow{+\sim} \{3\})$ satisfying total is the subcategory of $\operatorname{Rel}(+\sim:3)$ comprised of the objects whose $+\sim$ relation is determined and total, i.e. specifies a function. This implicational subcategory is concretely isomorphic to Magma, also known as $\operatorname{Alg}(2)$, so if we can show that total belongs to an \mathcal{E} of some factorization structure on $\operatorname{Rel}(+\sim:3)\operatorname{Det}(+\sim:\{1,2\})$, then we will have a nicely-behaved unification of relations and algebras that simply views algebraic operators as total and determined relations.

Theorem. If Δ is a set (rather than an arbitrary-sized collection), then the category $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$ has an (Epi, Extremal Mono-Source)-factorization structure.

Proof. Unfortunately the collection Extremal Mono-Source for $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$ is larger than Initial Mono-Source_U, so we cannot use the proof from the homework. While we could use factorization structures on *functors* (rather than categories), here we will prove it from first principles rather than introduce yet another concept.

For our first step, we classify (without proof) the epimorphisms of $\operatorname{\mathbf{Rel}}(\Phi)\operatorname{\mathbf{Det}}(\Delta)$. A morphism f from an object $\langle A, \{R_A\}_{R:n\in\Phi}\rangle$ to an object $\langle B, \{R_B\}_{R:n\in\Phi}\rangle$ is epic in $\operatorname{\mathbf{Rel}}(\Phi)\operatorname{\mathbf{Det}}(\Delta)$ if and only if for every element b in B there is a proof that f generates $_{\{R_B\}_{R:n\in\Phi}}^{\Delta} b$ built from the following inference rules:

$$\frac{a \in A}{f \text{ generates}_{\{R_B\}_{R:n \in \Phi}}^{\Delta} f(a)} \qquad \frac{R: n \in \Phi}{R: J \in \Delta} \quad \begin{cases} \langle b_1, \dots, b_n \rangle \in R_B \\ \text{for all } j \text{ in } J, f \text{ generates}_{\{R_B\}_{R:n \in \Phi}}^{\Delta} b_j \end{cases}}{f \text{ generates}_{\{R_B\}_{R:n \in \Phi}}^{\Delta} b_k}$$

For our second step, we classify (without proof) the extremal mono-sources of $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$. A source $\{f_i\}_{i\in I}$ from an object $\langle A, \{R_A\}_{R:n\in\Phi}\rangle$ to objects $\langle B_i, \{R_i\}_{R:n\in\Phi}\rangle$ is an extremal mono-source in $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$ if and only if the following three properties hold:

$$\begin{array}{l} \textbf{Mono} \ \forall a, a' \in A. \ (\forall i \in I. \ f_i(a) = f_i(a')) \implies a = a' \\ \textbf{Initial} \ \forall R : n \in \Phi. \ \forall a_1, \dots, a_n \in A. \ (\forall i \in I. \ \langle f_i(a_1), \dots, f_i(a_n) \rangle \in R_i) \implies \langle a_1, \dots, a_n \rangle \in R_A \\ \textbf{Extremal} \ \begin{array}{l} \forall R : n \in \Phi. \ \forall R : J \in \Delta. \ \forall a \in J \to A. \\ (\forall i \in I. \ \exists \langle b_1, \dots, b_n \rangle \in R_i. \ \forall j \in J. \ f_i(a_j) = b_j) \implies \exists \langle a'_1, \dots, a'_n \rangle \in R_A. \ \forall j \in J. \ a_j = a'_j \end{array}$$

For our third step, we construct factorizations of sources. To do so, we first define the *set* of "expressions with free variables A from determinisms Δ of Φ ", which we can only do if Δ itself is a set. Define $\mathsf{Expr}_{\Delta}^{\Phi}(A)$ to be the smallest set with the following disjoint injective functions (i.e. constructors):

$$\mathsf{var}: A \hookrightarrow \mathsf{Expr}_{\Delta}^{\Phi}(A) \qquad \text{for each } R: n \text{ in } \Phi, \ R: J \text{ in } \Delta, \text{ and } k \text{ in } \{1, \dots n\}, \ \mathsf{op}_k^R: (J \to \mathrm{Expr}_{\Delta}^{\Phi}(A)) \hookrightarrow \mathsf{Expr}_{\Delta}^{\Phi}(A)$$

Given a source $\{f_i\}_{i \in I}$ from an object $\langle A, \{R_A\}_{R:n \in \Phi} \rangle$ to objects $\langle B_i, \{R_i\}_{R:n \in \Phi} \rangle$, for each i in I we inductively

define the following $\stackrel{i}{\mapsto}$ relation between expressions $\mathsf{Expr}_{\Delta}^{\Phi}(A)$ and elements of B_i with the following inference rules:

$$\frac{a \in A}{\operatorname{var}(a) \stackrel{i}{\mapsto} f_{i}(a)} \qquad \qquad \frac{R : n \in \Phi \quad \langle b_{1}, \dots, b_{n} \rangle \in R_{i} \quad k \in \{1, \dots, n\}}{R : J \in \Delta \quad e : J \to \operatorname{Expr}_{\Delta}^{\Phi}(A) \quad \text{for all } j \text{ in } J, \ e_{j} \stackrel{i}{\mapsto} b_{j}}{\operatorname{op}_{k}^{R}(e) \stackrel{i}{\mapsto} b_{k}}$$

Because every R_i satisfies the relevant determinisms in Δ , one can easily show that every $\stackrel{i}{\mapsto}$ relation is determined, meaning there is at most one $b \in B_i$ that a given expression maps to via $\stackrel{i}{\mapsto}$. However, the $\stackrel{i}{\mapsto}$ relations are not necessarily total, and so we define E to be $\{e \in \mathsf{Expr}_{\Delta}^{\Phi}(A) \mid \forall i \in I. \exists b \in B_i. e \stackrel{i}{\mapsto} b\}$. By definition, every $\stackrel{i}{\mapsto}$ relation is total on this subset, and since every $\stackrel{i}{\mapsto}$ relation is also determined, they each specify a function, say g_i , from Eto B_i . Thus we have a source $\{g_i : E \to B_i\}_{i \in I}$ in **Set**. Let $(e : E \to Q, \{m_i : Q \to B_i\}_{i \in I})$ be its (Epi, Mono-Source)factorization. The set Q will be the underlying set of our factorization of $\{f_i\}_{i \in I}$ in $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$. In order to define the relations on Q we observe that the construct $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$ is monotopological, and so for each R : nin Φ we define R_Q to be the relation $\{\langle q_1, \ldots, q_n \rangle \mid \forall i \in I. \langle m_i(q_1), \ldots, m_i(q_n) \rangle \in R_i\}$, which can easily be shown to satisfy the relevant determinisms in Δ because every R_i does. From the constructions of E, of $\{m_i\}_{i \in I}$, and of $\{R_Q\}_{R:n\in\Phi}$, one can easily show that the source $\{m_i : \langle Q, \{R_Q\}_{R:n\in\Phi} \rangle \to \langle B_i, \{R_i\}_{R:n\in\Phi} \rangle\}_{i\in I}$ is an extremal mono-source in $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$. Lastly, it is easy to prove that every expression of the form $\operatorname{var}(a)$ belongs to the subset E, so there is a function from A to Q given by $a \mapsto e(\operatorname{var}(a))$. It is furthermore easy to prove that this function lifts to a morphism from $\langle A, \{R_A\}_{R:n\in\Phi} \rangle$ to $\langle Q, \{R_Q\}_{R:n\in\Phi} \rangle$, and additionally that this morphism is epic in $\operatorname{Rel}(\Phi)\operatorname{Det}(\Delta)$ due to the constructions of E, of e, and of $\{R_Q\}_{R:n\in\Phi}$. And clearly this morphism has the property that, when composed with m_i for any i in I, results in f_i .

For our third step, we construct unique diagonalizations. Suppose we are given an epimorphism $e: A \to B$, a source $\{g_i: B \to D_i\}_{i \in I}$, a morphism $f: B \to C$, and an extremal mono-source $\{m_i: C \to D_i\}_{i \in I}$ with the property that $e; g_i$ equals $f; m_i$ for every i in I. We need to construct a morphism $d: B \to C$ such that e; d equals f and $d; m_i$ equals f_i for every i in I. Any such morphism is necessarily unique because e is an epimorphism. The mapping d(b) = c is defined to hold whenever $\forall i \in I$. $f_i(b) = m_i(c)$ holds. This mapping is total by induction on the proof that e generates $\Delta_{\{R_B\}_{R:n \in \Phi}} b$ for all b in B, using the fact that $\{f_i\}_{i \in I}$ is relation-preserving and $\{m_i\}_{i \in I}$ is a mono-source; and the mapping is relation-preserving because $\{m_i\}_{i \in I}$ is initial. \Box