Comma Categories

Ross Tate

February 12, 2018

Definition. Given functors $\mathbf{A}_{1} \xrightarrow{F_{1}} \mathbf{B} \stackrel{F_{2}}{\rightleftarrows} \mathbf{A}_{2}$, the comma category $F_{1} \downarrow F_{2}$ is comprised of the following:
Objects A triple $\left\langle A_{1} \in \mathrm{Ob}_{\mathbf{A}_{1}}, A_{2} \in \mathrm{Ob}_{\mathbf{A}_{1}}, m \in \operatorname{Hom}_{\mathbf{B}}\left(F_{1}\left(A_{1}\right), F_{2}\left(A_{2}\right)\right)\right\rangle$, often just written $F_{1} A_{1} \xrightarrow{m} F_{2} A_{2}$.
Morphisms Given two objects $F_{1} A_{1} \xrightarrow{m} F_{2} A_{2}$ and $F_{1} A_{1}^{\prime} \xrightarrow{m^{\prime}} F_{2} A_{2}^{\prime}$, a morphism from m to m^{\prime} is a pair $\left\langle f_{1} \in \operatorname{Hom}_{\mathbf{A}_{1}}\left(A_{1}, A_{1}^{\prime}\right), f_{2} \in \operatorname{Hom}_{\mathbf{A}_{2}}\left(A_{2}, A_{2}^{\prime}\right)\right\rangle$ such that following square commutes:

Morphisms are often simply depicted by this square.
Identity The identity on object $m: F_{1} A_{1} \rightarrow F_{2} A_{2}$ is the following:

Composition The composition of morphims $\left\langle f_{1}, f_{2}\right\rangle$ and $\left\langle f_{1}^{\prime}, f_{2}^{\prime}\right\rangle$ is the following:

Definition. In the case where either F_{1} or F_{2} is actually the identity functor on \mathbf{B}, then one typically uses the notations $\mathbf{B} \downarrow F_{2}$ or $F_{1} \downarrow \mathbf{B}$ rather than $\operatorname{Id}_{\mathbf{B}} \downarrow F_{2}$ or $F_{1} \downarrow \operatorname{Id}_{\mathbf{B}}$. In general, as an abuse of notation, one often denotes the identity functor on a category with the category itself. Similarly, one often denotes the identity morphism on an object with the object itself.
Definition. $\mathbf{1}$ is the category with a single object (\star) and a single morphism (\star) on that object.
Example. Given functors $\mathbf{1} \xrightarrow{\mathbb{Z}}$ Set $\stackrel{\text { Idset }}{\leftrightarrows}$ Set (where the former is the constant functor picking out the singleton set $\mathbb{1}$), the comma category $\mathbb{1} \downarrow$ Set is also known as $\mathbf{p S e t}$, the category of pointed sets. Unfolding definitions, an object in pSet is a set A and an element a of A. A morphism in $\mathbf{p S e t}$ from $\langle A, a\rangle$ to $\langle B, b\rangle$ is a function $f: A \rightarrow B$ such that $f(a)=b$. In other words, the following diagrams commute:

Example. Given any category \mathbf{A} and object A of \mathbf{A}, we can generalize the above construction with $A \downarrow \mathbf{A}$. This is also known as the category of objects under A, or as the coslice category A / \mathbf{A}.

Example. Given functors Set $\xrightarrow{\mathrm{Id}_{\text {set }}}$ Set $\stackrel{\stackrel{.}{2}^{\leftarrow}}{\leftarrow}$ Set (where the latter is the functor mapping a set A to the set of pairs A^{2}), the comma category Set $\downarrow .^{2}$ is (isomorphic to) Graph, the category of graphs. Unfolding definitions, an object in $\operatorname{Set} \downarrow .^{2}$ is a set E, a set V, and a function from E to V^{2} (i.e. $V \times V$), or equivalently a pair of functions $s, t: E \rightarrow V$. A morphism in $\operatorname{Set} \downarrow .{ }^{2}$ is a pair of functions $f_{E}: E \rightarrow E^{\prime}$ and $f_{V}: V \rightarrow V^{\prime}$ such that the following diagrams commutes:

Example. Given a set L and functors Set $\xrightarrow{\mathrm{Id}_{\text {Set }}}$ Set $\stackrel{L}{\leftarrow} \mathbf{1}$ (where the latter is the constant function picking out L), the comma category Set $\downarrow L$ can be viewed as the category of sets with labeled elements and label-preserving functions. Unfolding definitions, an object in $\operatorname{Set} \downarrow L$ is a set A and a "labeling" function $\ell: A \rightarrow L$. A morphism in Set $\downarrow L$ from $\left\langle A, \ell_{A}\right\rangle$ to $\left\langle B, \ell_{B}\right\rangle$ is a function $f: A \rightarrow B$ such that $\forall a \in A \cdot \ell_{B}(f(a))=\ell_{A}(a)$. In other words, the following diagrams commute:

Example. Given any category \mathbf{A} and object A of \mathbf{A}, we can generalize the above construction with $\mathbf{A} \downarrow A$. This is also known as the category of objects over A, or as the slice category \mathbf{A} / A.

Definition. Given functors $\mathbf{A}_{1} \xrightarrow{F_{1}} \mathbf{B} \stackrel{F_{2}}{\longleftarrow} \mathbf{A}_{2}$, the functor $\pi_{1}: F_{1} \downarrow F_{2} \rightarrow \mathbf{A}_{2}$ maps the object $F_{1} A_{1} \xrightarrow{m} F_{2} A_{2}$ to the object A_{1} and the morphism $\left\langle f_{1}, f_{2}\right\rangle$ to the morphism f_{1}. Similarly, the functor $\pi_{2}: F_{1} \downarrow F_{2} \rightarrow \mathbf{A}_{2}$ maps the object $F_{1} A_{1} \xrightarrow{m} F_{2} A_{2}$ to the object A_{2} and the morphism $\left\langle f_{1}, f_{2}\right\rangle$ to the morphism f_{2}. Note that π_{1} and π_{2} are both abuses of notation and represent other constructs in other contexts. Also, sometimes they are instead denoted as $\pi_{\mathbf{A}_{1}}$ and $\pi_{\mathbf{A}_{2}}$.

Example. Given a set L and functors $\operatorname{Set} / L \xrightarrow{\pi_{\text {Set }}}$ Set $\stackrel{\stackrel{.}{2}^{\leftarrow}}{\leftarrow}$ Set, the corresponding comma category is (isomorphic to) L-Graph, the category of graphs with L-labeled edges. Unfolding definitions, an object is a set E with a "labelling" function $\ell: E \rightarrow L$, a set V, and a function from E to V^{2} (i.e. $V \times V$), or equivalently a pair of functions $s, t: E \rightarrow V$. A morphism is a morphism $f_{\ell}:\langle E, \ell\rangle \rightarrow\left\langle E^{\prime}, \ell^{\prime}\right\rangle$ in Set $/ L$ and a function $f_{V}: V \rightarrow V^{\prime}$ such that the following diagrams commutes (where $f_{E}=\pi_{\text {Set }}\left(f_{\ell}\right)$):

