Categories

Ross Tate

January 17, 2018

1 Monoids (and Endomorphisms)

Definition. A monoid is comprised of a set A with a distinguished element, denoted e, and a binary operator on A, denoted by juxtaposition, satisfying the following properties

Identity $\forall a \in A$. ea $=a=a e$
Associativity $\forall a_{1}, a_{2}, a_{3} \in A . a_{1}\left(a_{2} a_{3}\right)=\left(a_{1} a_{2}\right) a_{3}$ (often unambiguously denoted simply by $a_{1} a_{2} a_{3}$)
Example. The tuples $\langle\mathbb{N}, 0,+\rangle,\langle\mathbb{Z}, 0,+\rangle,\langle\mathbb{R}, 0,+\rangle,\langle\mathbb{N}, 1, *\rangle,\langle\mathbb{Z}, 1, *\rangle$, and $\langle\mathbb{R}, 1, *\rangle$ are all monoids.
Example. Substraction is not an associative operator, which is why we have to memorize that $a-b-c$ means specifically $(a-b)-c$ and not $a-(b-c)$.
Definition. Given two monoids A and B, a monoid homomorphism from A to B is a function $f: A \rightarrow B$ satisfying the following properties:

Preservation of Identity $f\left(e_{A}\right)=e_{B}$
Preservation of Multiplication $f\left(a_{1} a_{2}\right)=f\left(a_{1}\right) f\left(a_{2}\right)$
Example. The inclusions $\mathbb{N} \hookrightarrow \mathbb{Z} \hookrightarrow \mathbb{R}$ provide monoid homomorphisms $\langle\mathbb{N}, 0,+\rangle \hookrightarrow\langle\mathbb{Z}, 0,+\rangle \hookrightarrow\langle\mathbb{R}, 0,+\rangle$ and $\langle\mathbb{N}, 1, *\rangle \hookrightarrow\langle\mathbb{Z}, 1, *\rangle \hookrightarrow\langle\mathbb{R}, 1, *\rangle$.
Example. For any $c \in \mathbb{R}^{>}$(which denotes the set of real numbers strictly greater than 0), the function $\lambda x . c^{x}$ is a monoid homomorphism from $\langle\mathbb{R}, 0,+\rangle$ to $\langle\mathbb{R}, 1, *\rangle$.
Definition. An endomorphism is a morphism from an object to that same object, i.e. a morphism whose domain is the same as its codomain.

Example. For any $c \in \mathbb{R}$, the function $\lambda x . c x$ is a monoid endomorphism on $\langle\mathbb{R}, 0,+\rangle$, and the function $\lambda x . x^{c}$ is a monoid endomorphism on $\left\langle\mathbb{R}^{\neq}, 1, *\right\rangle$ (where \mathbb{R}^{\neq}denotes the set of real numbers not equal to 0).
Definition. Mon is the category whose objects are monoids and whose morphisms are monoid homomorphisms.

2 Groups

Definition. A group is a monoid A with a unary operator ${ }^{-1}$, known as the inverse operator, satisfying the property $\forall a \in A . a a^{-1}=e=a^{-1} a$.
Example. $\langle\mathbb{R}, 0,+,-\rangle$ and $\left\langle\mathbb{R} \neq, 1,,^{-1}\right\rangle$ are both groups.
Definition. A group homomorphism from A to B is a monoid homomorphism $f: A \rightarrow B$ that preserves inverses, meaning $\forall a \in A$. $f\left(a^{-1}\right)=f(a)^{-1}$.
Definition. Grp is the category whose objects are groups and whose morphisms are group homomorphisms.

3 Relations as Morphisms

Definition. Rel is the category whose objects are sets and whose morphisms from A to B are relations between A and B, i.e. subsets of $A \times B$.

Identity The identity relation on A is A 's equality relation, i.e. the subset $\{\langle a, a\rangle \mid a \in A\} \subseteq A \times A$.
Composition Given two relations $R \subseteq A \times B$ and $S \subseteq B \times C$, the composition $R ; S$ relates $a \in A$ to $c \in C$ when there exists a $b \in B$ such that $a R b$ and $b S c$ hold. In other words, $R ; S$ is the subset $\{\langle a, c\rangle \mid a \in A, c \in C, \exists b \in B .\langle a, b\rangle \in R \wedge\langle b, c\rangle \in S\} \subseteq A \times C$.

4 Languages

Definition. Given a set Σ conceptually representing characters, Σ-Lang is the category of Σ-languages. Its objects are subsets of $\mathbb{L} \Sigma$ (i.e. Σ-strings), and there exists a unique morphism from one object to another if the former is a subset of the latter.

5 Graphs

Definition. Graph is the category of (directed) graphs and graph homomorphisms. A graph is comprised of a set V (of vertices), a set E (of edges), and functions s (source) and t (target) from E to V. A graph homomorphism from the graph $\left\langle V_{1}, E_{1}, s_{1}, t_{1}\right\rangle$ to the graph $\left\langle V_{2}, E_{2}, s_{2}, t_{2}\right\rangle$ is comprised of a function $f_{v}: V_{1} \rightarrow V_{2}$ and a function $f_{e}: E_{1} \rightarrow E_{2}$ that preserves sources and targets, meaning $\forall e \in E_{1} . s_{2}\left(f_{e}(e)\right)=f_{v}\left(s_{1}(e)\right)$ and $\forall e \in E_{1} \cdot t_{2}\left(f_{e}(e)\right)=t_{v}\left(s_{1}(e)\right)$.

Definition. L-Graph is the category of (directed) graphs with L-labeled edges. An object is comprised of a graph $\langle V, E, s, t\rangle$ and a (labeling) function $\ell: E \rightarrow L$. A morphism from $\left\langle G_{1}, \ell_{1}\right\rangle$ to $\left\langle G_{2}, \ell_{2}\right\rangle$ is a graph homomorphism $\left\langle f_{v}, f_{e}\right\rangle: G_{1} \rightarrow G_{2}$ that preserves labels, meaning $\forall e \in E_{1} \cdot \ell_{2}\left(f_{e}(e)\right)=\ell_{1}$.

6 Circuits

Definition. A circuit from $m \in \mathbb{N}$ to $n \in \mathbb{N}$ is a finite set G (of gates), a function op : $G \rightarrow\{\wedge, \vee\} \times\{+,-\}$ (specifying which operator each gate employs: and/or/nand/nor), a well-founded relation $W \subseteq\left(\mathbb{N}_{m}+G\right) \times G$ (indicating when there is a wire from an input/gate to a gate), and a function out: $\mathbb{N}_{n} \rightarrow \mathbb{N}_{m}+G$ indicating which input/gate generates a given output. Two circuits C_{1} and C_{2} are equal if there is a bijection between G_{1} and G_{2} that preserves the relevant structures.

Definition. Circ is the category of circuits. Its objects are natural numbers (indicating the number of bits), and its morphisms from m to n are the circuits from m to n. The identity circuits are the empty circuits in which every output is generated by the corresponding input. The composition of circuits C_{1} and C_{2} uses the disjoint union of the gates of C_{1} and C_{2} and rewires each input in C_{2} to the gate generating the corresponding output in C_{1}.

