Transpositions and Adjunctions

Ross Tate

April 5, 2018

between L and R

- assigns to each L-costructured morphism $g: L C \rightarrow D$ an R-structured morphism $g \rightarrow C \rightarrow R D$
- and assigns to each R-structured morphism $f: C \rightarrow R D$ an L-costructured morphism $f^{\leftarrow}: L C \rightarrow D$
- such that the assignments are bijective, meaning $\forall g: L C \rightarrow D .\left(g^{\rightarrow}\right)^{\leftarrow}=g$ and $\forall f: C \rightarrow R D .\left(f^{\leftarrow}\right) \rightarrow=f$,
- and natural, meaning $\forall f^{\prime}: C \rightarrow C^{\prime}, g^{\prime}: D \rightarrow D^{\prime}$ we have $\forall g: L C^{\prime} \rightarrow D .\left(L f^{\prime} ; g ; g^{\prime}\right)^{\rightarrow}=f^{\prime} ; g^{\rightarrow} ; R g^{\prime}$ and $\forall f: C^{\prime} \rightarrow R D .\left(f^{\prime} ; f ; R g^{\prime}\right)^{\leftarrow}=L f^{\prime} ; f^{\leftarrow} ; g^{\prime}$.

Example. Given a subcategory $\mathbf{A} \stackrel{I}{\hookrightarrow} \mathbf{B}$ and a reflector $R: \mathbf{B} \rightarrow A$ with reflection arrows $\left\{r_{B}: B \rightarrow I R B\right\}_{B \in \mathbf{B}}$, we can build a transposition $R \dashv I$. For a B-morphism $f: B \rightarrow I A$, define $f^{\leftarrow}: R B \rightarrow A$ as the \mathbf{A}-morphism that is uniquely induced by the reflection arrow r_{B}. For a A-morphism $g: R B \rightarrow A$, define $g \rightarrow: B \rightarrow I A$ as $r_{B} ; I g$.

Example. Given a category \mathbf{C} and a set I, we can define the category \mathbf{C}^{I} whose objects are I-indexed tuples of \mathbf{C} objects and whose morphisms are I-indexed tuples of \mathbf{C} morphisms, with the remaining structure defined in the obvious way. We can also define a functor $\Delta_{I}: \mathbf{C} \rightarrow \mathbf{C}^{I}$ that maps each object/morphism of \mathbf{C} to the I-tuple simply comprised of I copies of the object/morphism. And if \mathbf{C} has I-indexed products, we can define a functor $\prod_{I}: \mathbf{C}^{I} \rightarrow \mathbf{C}$ mapping each I-indexed tuple of \mathbf{C} objects to their product and each I-indexed tuple of morphisms to the corresponding uniquely induced morphism between those products. These functors extend to a transposition $\Delta_{I} \dashv \prod_{I}$. To see why, note that an I-indexed source with domain C corresponds to an I-indexed tuple of morphisms with domain $\Delta_{I}(C)$. Consequently, for an I-indexed tuple of morphisms with domain $\Delta_{I}(C)$, i.e. a source $\left\{C \xrightarrow{g_{i}} C_{i}\right\}_{i \in I}$, define $\left(\left\{C \xrightarrow{g_{i}} C_{i}\right\}_{i \in I}\right) \rightarrow C \rightarrow \prod_{i \in I} C_{i}$ as $\left\langle g_{i}\right\rangle_{i \in I}$. And for a C-morphism $f: C \rightarrow \prod_{i \in I} C_{i}$, define $f^{\leftarrow}: \Delta_{I}(C) \rightarrow\left\{C_{i}\right\}_{i \in I}$ as $\left\{C \xrightarrow{f ; \pi_{i}} C_{i}\right\}_{i \in I}$.

Example. If a category \mathbf{C} has I-indexed coproducts, we can define a functor $\coprod_{I}: \mathbf{C}^{I} \rightarrow \mathbf{C}$ mapping each I-indexed tuple of \mathbf{C} objects to their coproduct and each I-indexed tuple of morphisms to the corresponding uniquely induced morphism between those coproducts. These functors extend to a transposition $\coprod_{I} \dashv \Delta_{I}$. To see why, note that an I-indexed sink with codomain C corresponds to an I-indexed tuple of morphisms with codomain $\Delta_{I}(C)$. Consequently, for an I-indexed tuple of morphisms with codomain $\Delta_{I}(C)$, i.e. a sink $\left\{C_{i} \xrightarrow{f_{i}} C\right\}_{i \in I}$, define $\left(\left\{C_{i} \xrightarrow{f_{i}} C\right\}_{i \in I}\right)^{\leftarrow}: \coprod_{i \in I} C_{i} \rightarrow C$ as $\left[f_{i}\right]_{i \in I}$. And for a $g: \coprod_{i \in I} C_{i} \rightarrow C$, define $g^{\rightarrow}:\left\{C_{i}\right\}_{i \in I} \rightarrow \Delta_{I}(C)$ as $\left\{C_{i} \xrightarrow{\kappa_{i} ; g} C\right\}_{i \in I}$.

Example. Given a concrete category $\mathbf{A} \xrightarrow{U} \mathbf{X}$ and a free-object functor $F: \mathbf{X} \rightarrow U$ with universal structured arrows $\left\{\eta_{X}: X \rightarrow U F X\right\}_{X \in \mathbf{X}}$, we can build a transposition $F \dashv U$. For a \mathbf{X}-morphism $f: X \rightarrow U A$, define $f^{\leftarrow}: F B \rightarrow A$ as the $\mathbf{A}-$ morphism that is uniquely induced by the universal structured arrow η_{X}. For a Amorphism $g: F X \rightarrow A$, define $g \rightarrow X \rightarrow U A$ as $\eta_{X} ; U g$.

Definition (Adjunction). Given a 2-category, an adjunction $\langle\eta, \varepsilon\rangle: \ell \dashv r: D \rightarrow C$ (where the order of D and C here is not a typo) is comprised of

- 0-cells C and D,
- 1-cells $\ell: C \rightarrow D$ (called the left adjoint) and $r: D \rightarrow C$ (called the right adjoint), and
- 2-cells $\eta: C \Rightarrow \ell ; r: C \rightarrow C$ (called the unit) and $\varepsilon: r ; \ell \Rightarrow D: D \rightarrow D$ (called the counit)
- such that both of the following compositions equal their respective identity 2 -cell:

Example. Suppose we have a transposition between functors $L: \mathbf{C} \rightarrow \mathbf{D}$ and $R: \mathbf{D} \rightarrow \mathbf{C}$. Then we build an adjunction $\langle\eta, \varepsilon\rangle: L \dashv R: \mathbf{D} \rightarrow \mathbf{C}$ by defining the natural transformation $\eta_{C}: C \rightarrow R L C$ as $\left(i d_{L C}\right) \rightarrow$ and the natural transformation $\varepsilon_{D}: L R D \rightarrow D$ as $\left(i d_{R D}\right)^{\leftarrow}$.

Example. Suppose we have an adjunction $\langle\eta, \varepsilon\rangle: L \dashv R: \mathbf{D} \rightarrow \mathbf{C}$ in Cat. Then we can build a transposition by defining g^{\rightarrow} for $g: L C \rightarrow D$ as $\varepsilon_{C} ; R g$ and defining f^{\leftarrow} for $f: C \rightarrow R D$ as $L f ; \eta_{D}$.

Example. In adjunction in Prost is also known as a (monotone) Galois connection. A (monotone) Galois connection between two preorded sets $\langle A, \leq\rangle$ and $\langle B, \leq\rangle$ is a pair of relation-preserving functions $F:\langle A, \leq\rangle \rightarrow\langle B, \leq\rangle$ and $G:\langle B, \leq\rangle \rightarrow\langle A, \leq\rangle$ such that $\forall a \in A, b \in B . F(a) \leq b \Longleftrightarrow a \leq G(b)$.

Definition (Equivalence). An equivalence is an adjunction in which η and ε are both 2 -isomorphisms. Two objects of a 2-category are said to be equivalent if there exists an equivalence between them. In particular, two categories are said to be equivalent if there exists an equivalence between them in Cat.

Example. Assuming the axiom of choice, every preorder $\langle X, \leq\rangle$ is equivalent in Prost to its antisymmetric quotient $\langle X / \approx, \leq\rangle$.

Example. The category of finite vector spaces and linear maps is equivalent to Mat.

