Transpositions and Adjunctions

Ross Tate

April 5, 2018

Definition (Transposition). Given a pair of categories and pair of functors as in $\mathbf{C} \underbrace{\sum_{R}}^{L} \mathbf{D}$, a transposition

between L and R

- assigns to each L-costructured morphism $g: LC \to D$ an R-structured morphism $g^{\to}: C \to RD$
- and assigns to each R-structured morphism $f: C \to RD$ an L-costructured morphism $f^{\leftarrow}: LC \to D$
- such that the assignments are bijective, meaning $\forall g: LC \to D. \ (g^{\to})^{\leftarrow} = g$ and $\forall f: C \to RD. \ (f^{\leftarrow})^{\to} = f$,
- and natural, meaning $\forall f': C \to C', g': D \to D'$ we have $\forall g: LC' \to D$. $(Lf'; g; g')^{\rightarrow} = f'; g^{\rightarrow}; Rg'$ and $\forall f: C' \to RD$. $(f'; f; Rg')^{\leftarrow} = Lf'; f^{\leftarrow}; g'$.

Example. Given a subcategory $\mathbf{A} \stackrel{I}{\hookrightarrow} \mathbf{B}$ and a reflector $R : \mathbf{B} \to A$ with reflection arrows $\{r_B : B \to IRB\}_{B \in \mathbf{B}}$, we can build a transposition $R \dashv I$. For a **B**-morphism $f : B \to IA$, define $f^{\leftarrow} : RB \to A$ as the **A**-morphism that is uniquely induced by the reflection arrow r_B . For a **A**-morphism $g : RB \to A$, define $g^{\rightarrow} : B \to IA$ as $r_B ; Ig$.

Example. Given a category \mathbb{C} and a set I, we can define the category \mathbb{C}^{I} whose objects are I-indexed tuples of \mathbb{C} objects and whose morphisms are I-indexed tuples of \mathbb{C} morphisms, with the remaining structure defined in the obvious way. We can also define a functor $\Delta_{I} : \mathbb{C} \to \mathbb{C}^{I}$ that maps each object/morphism of \mathbb{C} to the I-tuple simply comprised of I copies of the object/morphism. And if \mathbb{C} has I-indexed products, we can define a functor $\prod_{I} : \mathbb{C}^{I} \to \mathbb{C}$ mapping each I-indexed tuple of \mathbb{C} objects to their product and each I-indexed tuple of morphisms to the corresponding uniquely induced morphism between those products. These functors extend to a transposition $\Delta_{I} \dashv \prod_{I}$. To see why, note that an I-indexed source with domain C corresponds to an I-indexed tuple of morphisms with domain $\Delta_{I}(C)$. Consequently, for an I-indexed tuple of morphisms with domain $\Delta_{I}(C)$, i.e. a source $\{C \xrightarrow{g_{i}} C_{i}\}_{i \in I}$, define $\{C \xrightarrow{g_{i}} C_{i}\}_{i \in I}^{-j} : C \to \prod_{i \in I} C_{i}$ as $\langle g_{i}\rangle_{i \in I}$. And for a \mathbb{C} -morphism $f : C \to \prod_{i \in I} C_{i}$, define $f^{\leftarrow} : \Delta_{I}(C) \to \{C_{i}\}_{i \in I}$ as $\{C \xrightarrow{f;\pi_{i}} C_{i}\}_{i \in I}$.

Example. If a category **C** has *I*-indexed coproducts, we can define a functor $\coprod_{I} : \mathbf{C}^{I} \to \mathbf{C}$ mapping each *I*-indexed tuple of **C** objects to their coproduct and each *I*-indexed tuple of morphisms to the corresponding uniquely induced morphism between those coproducts. These functors extend to a transposition $\coprod_{I} \dashv \Delta_{I}$. To see why, note that an *I*-indexed sink with codomain *C* corresponds to an *I*-indexed tuple of morphisms with codomain $\Delta_{I}(C)$. Consequently, for an *I*-indexed tuple of morphisms with codomain $\Delta_{I}(C)$, i.e. a sink $\{C_{i} \stackrel{f_{i}}{\to} C\}_{i \in I}$, define $(\{C_{i} \stackrel{f_{i}}{\to} C\}_{i \in I})^{\leftarrow} : \coprod_{i \in I} C_{i} \to C$ as $[f_{i}]_{i \in I}$. And for a $g : \coprod_{i \in I} C_{i} \to C$, define $g^{\rightarrow} : \{C_{i}\}_{i \in I} \to \Delta_{I}(C)$ as $\{C_{i} \stackrel{\kappa_{i}; g}{\to} C\}_{i \in I}$.

Example. Given a concrete category $\mathbf{A} \xrightarrow{U} \mathbf{X}$ and a free-object functor $F : \mathbf{X} \to U$ with universal structured arrows $\{\eta_X : X \to UFX\}_{X \in \mathbf{X}}$, we can build a transposition $F \dashv U$. For a **X**-morphism $f : X \to UA$, define $f^{\leftarrow} : FB \to A$ as the **A**-morphism that is uniquely induced by the universal structured arrow η_X . For a **A**-morphism $g : FX \to A$, define $g^{\rightarrow} : X \to UA$ as $\eta_X ; Ug$.

Definition (Adjunction). Given a 2-category, an adjunction $\langle \eta, \varepsilon \rangle : \ell \dashv r : D \to C$ (where the order of D and C here is not a typo) is comprised of

- 0-cells C and D,
- 1-cells $\ell: C \to D$ (called the left adjoint) and $r: D \to C$ (called the right adjoint), and
- 2-cells $\eta: C \Rightarrow \ell; r: C \to C$ (called the unit) and $\varepsilon: r; \ell \Rightarrow D: D \to D$ (called the counit)
- such that both of the following compositions equal their respective identity 2-cell:

Example. Suppose we have a transposition between functors $L : \mathbf{C} \to \mathbf{D}$ and $R : \mathbf{D} \to \mathbf{C}$. Then we build an adjunction $\langle \eta, \varepsilon \rangle : L \dashv R : \mathbf{D} \to \mathbf{C}$ by defining the natural transformation $\eta_C : C \to RLC$ as $(id_{LC})^{\neg}$ and the natural transformation $\varepsilon_D : LRD \to D$ as $(id_{RD})^{\leftarrow}$.

Example. Suppose we have an adjunction $\langle \eta, \varepsilon \rangle : L \dashv R : \mathbf{D} \to \mathbf{C}$ in **Cat**. Then we can build a transposition by defining g^{\rightarrow} for $g : LC \to D$ as ε_C ; Rg and defining f^{\leftarrow} for $f : C \to RD$ as Lf; η_D .

Example. In adjunction in **Prost** is also known as a (monotone) Galois connection. A (monotone) Galois connection between two preorded sets $\langle A, \leq \rangle$ and $\langle B, \leq \rangle$ is a pair of relation-preserving functions $F : \langle A, \leq \rangle \rightarrow \langle B, \leq \rangle$ and $G : \langle B, \leq \rangle \rightarrow \langle A, \leq \rangle$ such that $\forall a \in A, b \in B$. $F(a) \leq b \iff a \leq G(b)$.

Definition (Equivalence). An equivalence is an adjunction in which η and ε are both 2-isomorphisms. Two objects of a 2-category are said to be equivalent if there exists an equivalence between them. In particular, two categories are said to be equivalent if there exists an equivalence between them in **Cat**.

Example. Assuming the axiom of choice, every preorder $\langle X, \leq \rangle$ is equivalent in **Prost** to its antisymmetric quotient $\langle X/\approx, \leq \rangle$.

Example. The category of finite vector spaces and linear maps is equivalent to Mat.