2-Categories

Ross Tate

April 15, 2018

Definition (2-Category). A (strict) 2-category is comprised of the following:

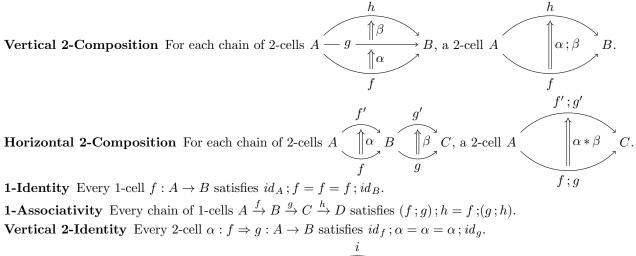
0-Cells (Objects) A set Ob of "0-cells", also known as objects.

- **1-Cells (Morphisms)** For each pair of 0-cells A and B in Ob, a set Hom(A, B) of "1-cells from A to B", also known as morphisms. A 1-cell is often declared textually as $f : A \to B$ or graphically as $A \xrightarrow{f} B$.
- **2-Cells** For each pair of 0-cells A and B in Ob and each pair of 1-cells f and g in Hom(A, B), a set Face(f, g) of "2-cells from f to g". A 2-cell is often declared textually as $\alpha : f \Rightarrow g : A \to B$ or graphically as follows:

1-Identities For each 0-cell A, a 1-cell $id_A : A \to A$.

1-Composition For each chain of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$, a 1-cell $A \xrightarrow{f ; g} C$.

2-Identities For each 1-cell $f : A \to B$, a 2-cell $id_f : f \Rightarrow f : A \to B$.



Vertical 2-Associativity Every chain of 2-cells $A \xrightarrow{h} \frac{\uparrow \gamma}{\uparrow \beta} B$ satisfies $(\alpha; \beta); \gamma = \alpha; (\beta; \gamma).$

Horizontal 2-Identity Every 2-cell $\alpha : f \Rightarrow g : A \to B$ satisfies $id_{id_A} * \alpha = \alpha = \alpha * id_{id_B}$. $f' \quad g' \quad h'$

Horizontal 2-Associativity Every chain of 2-cells $A \underbrace{\bigoplus_{f} \alpha}_{f} B \underbrace{\bigoplus_{g} \beta}_{g} C \underbrace{\bigoplus_{h} \gamma}_{h} D$ satisfies $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$.

2-Identity Every sequence of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$ satisfies $id_f * id_g = id_{f;g}$.

2-Interchange Every clover of 2-cells
$$A \xrightarrow{-g} \underbrace{\uparrow \beta}_{f} \xrightarrow{h} B \xrightarrow{-g'} \underbrace{\uparrow \beta'}_{f'} B$$
 satisfies $(\alpha; \beta) * (\alpha'; \beta') = (\alpha * \alpha'); (\beta * \beta').$

Example. Cat is the 2-category of categories (as 0-cells), functors (as 1-cells), and natural transformations (as 2-cells).

Definition (2-Thin). A 2-category is 2-thin if there is at most one 2-cell between any two given 1-cells. Consequently, when defining 2-thin 2-categories, one need only specify when one 1-cell is "less than" another 1-cell, indicating that there is a unique morphism from the former to the latter.

Example. Given a category \mathbf{X} , $\mathbf{Con}(\mathbf{X})$ is the 2-category of concrete categories over \mathbf{X} , concrete functors over \mathbf{X} , and identity-carried natural transformations over \mathbf{X} . **Con** is the 2-category $\mathbf{Con}(\mathbf{Set})$ of constructs. (Note that the textbook refers to these as $\mathbf{CAT}(\mathbf{X})$ and \mathbf{CONST} .) Because the underlying functor of a concrete category is required to be faithful, one can prove that $\mathbf{Con}(\mathbf{X})$ is always 2-thin.

Example. Rel is the 2-thin 2-category obtained from the category **Rel** by defining $R \leq S : A \rightarrow B$ as

$$\forall a \in A, b \in B. \ a \ R \ b \implies a \ S \ b$$

Example. Prost is the 2-thin 2-category obtained from the category Prost by defining $f \leq g : \langle A, \leq \rangle \to \langle B, \leq \rangle$ as

$$\forall a \in A. \ f(a) \le g(a)$$

Example. LMet is the 2-thin 2-category obtained from the category LMet by defining $f \leq g : \langle A, d \rangle \rightarrow \langle B, d \rangle$ as

$$\forall a, a' \in A. \ d(a, a') \ge d(f(a), g(a'))$$

Note that if $\langle B, d \rangle$ is separated, then $f \leq g$ implies f = g since $\forall a \in A$. $0 \geq d(a, a) \geq d(f(a), g(a)) \implies f(a) = g(a)$.

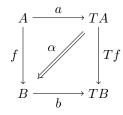
Definition. Given a 2-category \mathbf{C} , the 2-category \mathbf{C}^{op} is defined to have the same components but with the 1-cells reversed. Similarly, the 2-category \mathbf{C}^{co} is defined to have the same components but with the 2-cells reversed. Lastly, the 2-category \mathbf{C}^{coop} is defined to have the same components but with both the 1-cells and the 2-cells reversed. Note that \mathbf{C}^{coop} , $(\mathbf{C}^{\text{co}})^{\text{op}}$, and $(\mathbf{C}^{\text{op}})^{\text{co}}$ are all the same.

Definition (2-Functor). A 2-functor from a 2-category \mathbf{C} to a 2-category \mathbf{D} is a mapping of 0-cells, 1-cells, and 2-cells that preserves identities and compositions.

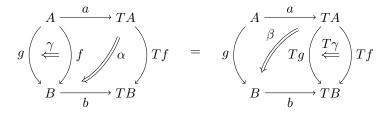
Definition. Given a 2-endofunctor $T : \mathbb{C} \to \mathbb{C}$, the 2-category $\operatorname{Coalg}_{\operatorname{colax}}(T)$ of coalgebras of T and colax algebra morphisms is comprised of the following:

Object An object A of **C** and a morphism $a : A \to TA$.

Morphism from $\langle A, a \rangle$ to $\langle B, b \rangle$ A morphism $f : A \to B$ and a 2-cell $\alpha : a ; f \Rightarrow Tf ; b : A \to TB$. That is:



2-Cell from $\langle f, \alpha \rangle$ to $\langle g, \beta \rangle$ A 2-cell $\gamma : f \Rightarrow g : A \to B$ such that the following 2-cells are equal:



Example. Rel(2) is isomorphic to the full subcategory of $\operatorname{Coalg}_{\operatorname{colax}}(\mathbb{P} : \operatorname{Prost} \to \operatorname{Prost})$ restricted to the objects $\langle \langle A, \leq \rangle, a \rangle$ for which \leq is actually $=_A$. That is, Rel(2) is isomorphic to the category of \mathbb{P} -coalgebras on *sets* and colax morphisms of coalgebras. In theory this makes Rel(2) a 2-category, but one can prove that it is 2-discrete, meaning the only 2-cells are identities, and so it has no interesting 2-categorical structure.