Assignment 7

Ross Tate

March 17, 2018

Exercise 1. Given functors $\mathbf{A}_1 \xrightarrow{F_1} \mathbf{B} \xleftarrow{F_2} \mathbf{A}_2$, recall that there are functors $\mathbf{A}_1 \xleftarrow{\pi_1} F_1 \downarrow F_2 \xrightarrow{\pi_2} \mathbf{A}_2$. Show that there is a natural transformation from $F_1 \downarrow F_2 \xrightarrow{\pi_1; F_1} \mathbf{B}$ to $F_1 \downarrow F_2 \xrightarrow{\pi_2; F_2} \mathbf{B}$.

Exercise 2. singleton : Set $\Rightarrow \mathbb{L}$ and flatten : $\mathbb{LL} \Rightarrow \mathbb{L}$ are two particularly important natural transformations pertaining to lists. The following equate various compositions of these natural transformations:

- 1. $(\texttt{singleton} * \mathbb{L}); \texttt{flatten} = id_{\mathbb{L}}$
- 2. $(\mathbb{L} * \texttt{singleton}); \texttt{flatten} = id_{\mathbb{L}}$
- 3. $(\texttt{flatten} * \mathbb{L}); \texttt{flatten} = (\mathbb{L} * \texttt{flatten}); \texttt{flatten}$

Write each side of equations 1, 2, and 3 as a polymorphic program of the form $\lambda \mathbf{l} : \tau$... for some type τ (referencing a type variable α) and using the following "library" functions with explicit subscripts (i.e. use explicit type arguments):

$$\begin{split} \mathtt{map}_{\alpha,\beta} &: (\alpha \to \beta) \to (\mathbb{L}\alpha \to \mathbb{L}\beta) \\ \mathtt{singleton}_{\alpha} &: \alpha \to \mathbb{L}\alpha \\ \mathtt{flatten}_{\alpha} &: \mathbb{L}\mathbb{L}\alpha \to \mathbb{L}\alpha \end{split}$$

Then prove equalities 1 and 2 (but not 3) by stepping through how they act on lists of the form $[x_1, \ldots, x_n]$.

Exercise 3. Prove that **Prost** is in fact a 2-thin 2-category, with $f \leq g : \langle A, \leq_A \rangle \rightarrow \langle B, \leq_B \rangle$ defined as $\forall a \in A. f(a) \leq_B g(a)$. You may assume that **Prost** is a category, and because it is 2-thin you do not need to prove the required equalities between various 2-cells because they all hold automatically.