Assignment 5

Ross Tate

March 1, 2018

Exercise 1. Given a monoid $\langle A, e, *\rangle$, an element $z \in A$ is said to be an absorbing element (also known as a zero element) if the following holds:

$$
\forall a \in A . z * a=z=a * z
$$

An example is the natural number 0 for the monoid $\langle\mathbb{N}, 1, *\rangle$. A monoid homomorphism is said to preserve absorbing elements if it maps absorbing elements to absorbing elements.

Absorbing elements of a monoid are provably unique (if they exist). Consequently, the category, say Mon M $_{0}$ of monoids with absorbing elements and absorbing-element-preserving monoid homomorphisms is a subcategory of Mon. Prove that it is a reflective subcategory, but skip the tedious proof that the object in Mon $\mathbf{M o n}_{0}$ that you define in fact satisfies the identity, associativity, and absorbing equalities, as well as the tedious proof that the reflection arrow you define is in fact a monoid homomorphism.

Exercise 2. Given subcategories \mathbf{A}_{1} and \mathbf{A}_{2} of a category \mathbf{B}, recall that $\mathbf{A}_{1} \cap \mathbf{A}_{2}$ is the subcategory of \mathbf{B} comprised of the objects and morphisms contained in both \mathbf{A}_{1} and \mathbf{A}_{2}. Suppose \mathbf{A}_{1} is a reflective subcategory of \mathbf{B}, and suppose $\mathbf{A}_{1} \cap \mathbf{A}_{2}$ is a full subcategory of \mathbf{A}_{1}. What simple additional property of the reflection arrows is sufficient (though not necessary) for $\mathbf{A}_{1} \cap \mathbf{A}_{2}$ to be a reflective subcategory of \mathbf{A}_{2} ? Prove that it is sufficient.

