Assignment 2

Ross Tate

January 26, 2018

Exercise 1. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is an isomorphism on \mathbb{R} in **Set** but is *not* an isomorphism on $\langle \mathbb{R}, \leq \rangle$ in **Rel**(2).

Exercise 2. Show that the function on objects mapping a set A to the pair of sets $\langle A, A \rangle$, along with the function on morphisms mapping a function f to the pair of functions $\langle f, f \rangle$, constitutes a functor from **Set** to **Set** × **Set**. (The latter category is defined in 3.3(4f).) This functor is often denoted **Set** $\xrightarrow{\Delta}$ **Set** × **Set**.

Exercise 3. Show that the function on objects mapping the pair of sets $\langle A, B \rangle$ to the set $A \times B$ can be extended into a functor from **Set** × **Set** to **Set**. This functor is, as an abuse of notation, often denoted **Set** × **Set** $\xrightarrow{\times}$ **Set**.

Exercise 4. The composition of functors $\mathbf{Set} \xrightarrow{\Delta} \mathbf{Set} \times \mathbf{Set} \xrightarrow{\times} \mathbf{Set}$ is equal to what familiar endofunctor on \mathbf{Set} ?

Exercise 5. For each of the following, show whether it is true or false:

- a) **Set** $\xrightarrow{\Delta}$ **Set** \times **Set** is faithful.
- b) Set $\xrightarrow{\Delta}$ Set \times Set is full.
- c) Set $\xrightarrow{\Delta}$ Set \times Set reflects isomorphisms.
- d) **Set** \times **Set** $\xrightarrow{\times}$ **Set** is faithful.
- e) $\mathbf{Set} \times \mathbf{Set} \xrightarrow{\times} \mathbf{Set}$ is full.
- f) **Set** \times **Set** $\xrightarrow{\times}$ **Set** reflects isomorphisms.