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Definition (Semiring). A semiring is a set A along with nullary operators 0 ∈ A and 1 ∈ A and binary opera-
tors + : A×A→ A and ∗ : A×A→ A such that 〈A, 0,+〉 forms a commutative (meaning ∀a, a′ ∈ A. a+ a′ = a′ + a)
monoid, 〈A, 1, ∗〉 forms a (not necessarily commutative) monoid, and ∗ distributes over 0 and +, meaning the fol-
lowing properties hold:

• ∀a ∈ A. a ∗ 0 = 0

• ∀a, a1, a2 ∈ A. a ∗ (a1 + a2) = (a ∗ a1) + (a ∗ a2)

• ∀a ∈ A. 0 ∗ a = 0

• ∀a, a1, a2 ∈ A. (a1 + a2) ∗ a = (a1 ∗ a) + (a2 ∗ a)

Remark. Given a multiplication of additions, distributivity of multiplication over addition implies it can be turned
into an equivalent addition of multiplications. That is, given a multiplication-of-additions expression like (a1 +
a2 + a3) ∗ (a4) ∗ (a5 + a6), we can distribute the multiplications over the additions to get an equivalent addition-of-
multiplications expression (a1 ∗a4 ∗a5)+(a1 ∗a4 ∗a6)+(a2 ∗a4 ∗a5)+(a2 ∗a4 ∗a6)+(a3 ∗a4 ∗a5)+(a3 ∗a4 ∗a6). Note
that we can also get (a1 ∗ a4 ∗ a5) + (a2 ∗ a4 ∗ a5) + (a3 ∗ a4 ∗ a5) + (a1 ∗ a4 ∗ a6) + (a2 ∗ a4 ∗ a6) + (a3 ∗ a4 ∗ a6), which
has the same multiplications but the order of additions is slightly different. So we can describe a multiplication of
additions as a list of multisets/bags, and additions of multiplications as a multiset/bag of lists, and distributivity
provides a way to transform a list of multisets/bags into a multiset/bag of lists. In fact, this distributivity describes a
natural tranformation δ : M ;L⇒ L ;M that distributes lists over multisets/bags. This behavior inspires the following
concept.

Definition. A distributive law of a monad 〈m1, η1, µ1〉 over a monad 〈m2, η2, µ2〉 both on the same 0-cell C of a
2-category C is a 2-cell δ : m2 ;m1 ⇒ m1 ;m2 satisfying the following four equalities:
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Remark. There is a (non-identity) natural transformation from L ;L to L ;L that corresponds to distributing a
multiplication of (a list of) additions (of lists) into an addition of (a list of) multiplications (of lists). However, it
fails to be a distributive law because, as shown before, different ways of distributing multiplications over additions
can lead to different orderings of the multiplications in the resulting addition. That is, the FOIL mnemonic for
distributing could just as well be FIOL. This is why generalizations of semirings that remove the commutativity
requirement of addition always also remove one of the distributivity axioms.
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Exercise 1. Given a distributivity law δ of a monad 〈m1, η1, µ1〉 over another monad 〈m2, η2, µ2〉 both on some
0-cell C in some 2-category C, the composition of 1-cells m1 ;m2 has a unit η and join µ such that 〈m1 ;m2, η, µ〉
is a monad on C. Define η and µ such that they satisfy the monad laws, but only explicitly prove either the left-
or right-identity law of the monad. You may use cell diagrams, string diagrams, or traditional algebraic formulae to
formulate your definitions and explain your proof.

Remark. A semiring is a monad algebra of the monad L ;M built from the aforementioned distributive law of L
over M. Note that multiplication in a semiring is a monad algebra of L and addition in a semiring is a monad
algebra of M. Thus a semiring is simply a set equipped with both a monad algebra of L and a monad algebra of M
satisfying an additional property as to how those two algebraic structures interact with each other, in particular that
multiplications distribute over additions.

Exercise 2. Given Cat-monads 〈M1, η1, µ1〉 and 〈M2, η2, µ2〉 on a category C, there is a sink CM1
U1−−→ C

U2←−−
CM2 in Cat. This sink has a pullback, often denoted somewhat ambiguously by CM1 ×C CM2 , because Cat
is complete (meaning Cat has all small limits). An object of this pullback is an object A ∈ C along with
morphisms a1 : M1A→ A and a2 : M2A → A that satisfy the requirements of monad algebras of 〈M1, η1, µ1〉
and 〈M2, η2, µ2〉 respectively. Given a distributive law δ of 〈M1, η1, µ1〉 over 〈M2, η2, µ2〉 and the resulting mo-
nad 〈M1 ;M2, η, µ〉, the category CM1 ;M2 is actually a full subcategory of CM1 ×C CM2 . Define the property
an object of CM1 ×C CM2 must satisfy in order to be contained in CM1 ;M2 , and prove that there is a bijective
correspondence between objects satisfying that property and monad algebras of 〈M1 ;M2, η, µ〉.

Remark. In the research on semantics of effects, often one uses a distributive law to combine two monads each capable
of expressing a different effect into one monad capable of expressing both effects.

Exercise 3. Given Cat-monads 〈M1, η1, µ1〉 and 〈M2, η2, µ2〉 on a category C, there is a source CM1

I1←− C
I2−→ CM2

in Cat. Given a distributive law δ of 〈M1, η1, µ1〉 over 〈M2, η2, µ2〉 and the resulting monad 〈M1 ;M2, η, µ〉, show

that there is a sink CM1

I′
1−→ CM1 ;M2

I′
2←− CM2

such that I1 ; I ′1 equals I2 ; I ′2 and I : C→ CM1 ;M2
is the diagonal of

the corresponding commuting square.

Remark. Note that I1, I ′1, I2, I ′2, and I are all monomorphisms in Cat, i.e. conceptually inclusions of subcategories,
if and only if (η1)C , (η2)C , and (M2η1)C are all monic for every object C of C.
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