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Exercise 1. Prove that for any category C and any object C : C, the category Sub((¢) is thin, meaning there is at
most one morphism between any two objects.

Proof. Let m; : 5 — C and my : S2 < C be objects of Sub(C), and let £i and f be morphisms from (S;,m) to
(S2, mp). By definition, the means f; ;mp equals m and fo;my equals my. Thus, f1;m equals fo;my. In order to be
object of Sub((), my must be a monomorphism. By the definition of monomorphism, the equality fi;m = fo;m
implies f; equals f2, thereby guaranteeing thinness. O

Exercise 2. Prove that Prost is a reflective subcategory of Rel(2) (the category whose objects are sets with a
binary relation and whose morphisms are relation-preserving functions).

Proof. Given a set X with a binary relation R : X x X — Prop, define <p to be the reflexive-transitive closure of
R. The identity function X is a relation-preserving function from (X, R) to (X, <g) by the definition of closure.
Suppose f is a relation-preserving function from (X, R) to (Y,C), and C is a reflexive, transitive relation. Then
f(z) C f(x) due to reflexivity, and given a chain 1 R ... R x, we know f(z1) C --- C f(z,) and so f(z1) C f(x,) by
transitivity. Therefore, f is also a relation-preserving function from (X, <g) to (Y, C) by the definition of reflexive-
transitive closure. O
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Exercise 3. Suppose a subcategory S < C has a mapping from each object ¢ : C to a reflection arrow ¢ = I(R(C)).
Prove that there is a unique way to extend the function R to a functor from C to S such that the reflection arrows
form a natural transformation r: C = R; 1.

Proof. Given a C-morphism f : (i — (3, define R(f) to be the unique morphism (f ;7)) with the property that
e s I((f576,)7) = f; 1o, guaranteed to exist because r., is a reflection arrow. By construction, this makes r a natural
transformation from C to R; I. Simililary, uniqueness of (f ; r;, )~ guarantees uniqueness of R. All that is left to prove
is that R is a functor. By definition, R(f;g) is the unique morphism with the property that r ; I(R(f ;4)) equals
(f:4):7c,- The chain of equalities r¢, ; I(R(f); R(g)) = e, ; I(R(f)) ; I(R(g)) = f 7, : I(R(g)) = f ;45 7, shows that
R(f); R(g) also enjoys this property and so must equal R(f;g). Similarly, the chain of equalities rc;1(id g(c)) =
Tc; itf[(R(C)) = 1 = id ¢ ; 70 implies that iLfR(C) equals R(id ;). O

Exercise 4. Prove that the category Cat can be enriched in the multicategory CAT.

Proof. We present the biased enrichment:

Objects: The class of small categories

Morphisms: Given small categories C and D, the corresponding object of morphisms is the category of functors
and natural transformations C — D

Compositions ¢: Define composition to be the binary functor from [C — D,D — E] to C — E that maps
(F:C—>D,G:D—>E)to F;G:C—=Eand (a: F; = F,,: Gy = Gs)toa-B: F;G, = Fy;Gy
where (a - 8)c is any path in the diagram below, which commutes due to naturality of j3:

G1(ap)

G1(F1(0)) G1(F»(0))

(o
Bri(o) <. B, (c)

G2(F1(C)) G2(F(0))

Ga(ac)




Gi(Fi(e)); Bpl(cg) 1 Ga(aca)
Bri () Galag, 5 Fa(c)) =

a - B is a natural transformation since Gi(Fi(c));(a - B)g =
Bri(cr) s G2(Fi(c)) ; Ga(ac) = Br(a)iGa(Fi(e);acs) =
Bri(a); G2(ag) ; G2(Fa(c)) = (a - B)¢ s G2(F2(c)) holds for any c: ¢ — G-

To be a functor this process needs to distribute over composition of natural transformations in C — D
(and preserve identities, which I show later). So, we need to show (a; ') - (8;8) equals (a - 8);(a - 3).
Consider the following two diagrams:

Gi(ac)

Gi(Fi(C) —

Gi(ar)

G1(F2(C)) — G1(F3(0))

G1(F1(0))

Gi((a;')c)

G1(F5(0))

(o
BFi(c) <. BFEy(0) Brs(c)
G / .
Ga(Fi(C G2(F2(0)) 2(ec) G2(F3(0)) (B3 8)F () [Q?@/ (B3B8 (o)
Galac) - <z
Br(o) Bre) N | By
G3(Fi(C) ——— G3(F2(C)) ———~ Gs(F3(0))  Gs(F1(0)) G5(F3(0))

Gs(ac) Gs(ap) Gs((asa’)e)
Both diagrams commute due to naturality and the definition of -. Notice that the left wall of both diagrams
are equal due to the definition of ; on natural transformations and the distributivity of G;. Similarly for
the other three walls. Thus the two diagonals must be equal. Since the left diagrams’s diagonal is
((a- B);(a’ - )¢ by definition of ;, this proves (a;a’) - (8;8') equals (a - 8);(a’ - 3).

Lastly, this process preserves identities:

(idp-ida)e = Glidpc)) s idar(c)) = dar(e) ;s dar) = idar) = (dr;c)c

Associativity a: We need to show that (F';G); H equals F';(G; H), which is already known since Cat is a
category and so composition is associative, and that (a - ) - v equals « - (5 - y). Consider the following
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cubes:

H1(G1(ac))

Cube (a) commutes due to naturality and functoriality. It indicates the missing labels for cubes (b) and (c),
which also commute by the definition of -. ((a- 8) - v)¢ is defined to be the diagonal of cube (b), and




(av- (B -7))c is defined to be the diagonal of cube (¢). Both of those are the diagonals of cube (a) and so
must be equal, proving associativity.

Identities i: For each small category C, we need to select an object of C — C. We select the identity functor.

Identity i: We need to show that Id¢ ; F' = F = F'; Idp, which is true since Cat is a category and we are using
its identities, and that Idc-a = a = «a - Idp:

(id 1ae - @) = F1(id ) s 0pge (o) = id py (o) s e = e = s id g0y = Idp(ac) s id rag (py(0)) = (- id 145 ) ¢




