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Exercise 1. Prove that for any category C and any object C : C, the category Sub(C) is thin, meaning there is at
most one morphism between any two objects.

Proof. Let m1 : S1 ↪→ C and m2 : S2 ↪→ C be objects of Sub(C), and let f1 and f2 be morphisms from 〈S1,m1〉 to
〈S2,m2〉. By definition, the means f1 ; m2 equals m1 and f2 ; m2 equals m1. Thus, f1 ; m2 equals f2 ; m2. In order to be
object of Sub(C), m2 must be a monomorphism. By the definition of monomorphism, the equality f1 ; m2 = f2 ; m2

implies f1 equals f2, thereby guaranteeing thinness.

Exercise 2. Prove that Prost is a reflective subcategory of Rel(2) (the category whose objects are sets with a
binary relation and whose morphisms are relation-preserving functions).

Proof. Given a set X with a binary relation R : X ×X A Prop, define ≤R to be the reflexive-transitive closure of
R. The identity function X is a relation-preserving function from 〈X,R〉 to 〈X,≤R〉 by the definition of closure.
Suppose f is a relation-preserving function from 〈X,R〉 to 〈Y,v〉, and v is a reflexive, transitive relation. Then
f(x) v f(x) due to reflexivity, and given a chain x1 R . . . R xn we know f(x1) v · · · v f(xn) and so f(x1) v f(xn) by
transitivity. Therefore, f is also a relation-preserving function from 〈X,≤R〉 to 〈Y,v〉 by the definition of reflexive-
transitive closure.

Exercise 3. Suppose a subcategory S
I
↪−� C has a mapping from each object C : C to a reflection arrow C rC−→ I(R(C)).

Prove that there is a unique way to extend the function R to a functor from C to S such that the reflection arrows
form a natural transformation r : C⇒ R ; I.

Proof. Given a C-morphism f : C1 → C2, define R(f ) to be the unique morphism (f ; rC2
)� with the property that

rC1
; I((f ; rC2

)�) = f ; rC2
guaranteed to exist because rC1

is a reflection arrow. By construction, this makes r a natural
transformation from C to R ; I. Simililary, uniqueness of (f ; rC2

)� guarantees uniqueness of R. All that is left to prove
is that R is a functor. By definition, R(f ; g) is the unique morphism with the property that rC1 ; I(R(f ; g)) equals
(f ; g) ; rC3 . The chain of equalities rC1 ; I(R(f ) ;R(g)) = rC1 ; I(R(f )) ; I(R(g)) = f ; rC2 ; I(R(g)) = f ; g ; rC3 shows that
R(f ) ;R(g) also enjoys this property and so must equal R(f ; g). Similarly, the chain of equalities rC ; I(id R(C)) =
rC ; id I(R(C)) = rC = id C ; rC implies that id R(C) equals R(id C ).

Exercise 4. Prove that the category Cat can be enriched in the multicategory CAT.

Proof. We present the biased enrichment:

Objects: The class of small categories

Morphisms: Given small categories C and D, the corresponding object of morphisms is the category of functors
and natural transformations C_ D

Compositions c: Define composition to be the binary functor from [C _ D,D _ E] to C _ E that maps
〈F : C → D, G : D → E〉 to F ;G : C → E and 〈α : F1 ⇒ F2, β : G1 ⇒ G2〉 to α · β : F1 ;G1 ⇒ F2 ;G2

where (α · β)C is any path in the diagram below, which commutes due to naturality of β:

G1(F1(C)) G1(F2(C))

G2(F1(C)) G2(F2(C))

G1(αC )

βF1(C) βF2(C)

G2(αC )

(α · β)C
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α · β is a natural transformation since G1(F1(c)) ;(α · β)C2
= G1(F1(c)) ;βF1(C2) ;G2(αC 2) =

βF1(C1) ;G2(F1(c)) ;G2(αC 2) = βF1(C1) ;G2(F1(c) ;αC 2) = βF1(C1) ;G2(αC1
;F2(c)) =

βF1(C1) ;G2(αC1
) ;G2(F2(c)) = (α · β)C1

;G2(F2(c)) holds for any c : C1 → C2.

To be a functor this process needs to distribute over composition of natural transformations in C _ D
(and preserve identities, which I show later). So, we need to show (α ;α′) · (β ;β′) equals (α · β) ;(α′ · β′).
Consider the following two diagrams:

G1(F1(C)) G1(F2(C)) G1(F3(C))

G2(F1(C)) G2(F2(C)) G2(F3(C))

G3(F1(C)) G3(F2(C)) G3(F3(C))

G1(αC ) G1(α′
C )

βF1(C) βF2(C) βF3(C)

G2(αC )

G2(α′
C )

β′
F1(C) β′

F2(C) β′
F3(C)

G3(αC ) G3(α′
C )

(α · β)C

(α ′· β ′)C

G1(F1(C)) G1(F3(C))

G3(F1(C)) G3(F3(C))

G1((α ;α′)C )

(β ;β′)F1(C) (β ;β′)F3(C)

G3((α ;α′)C )

((α ;β) · (α ′
;β ′))C

Both diagrams commute due to naturality and the definition of ·. Notice that the left wall of both diagrams
are equal due to the definition of ; on natural transformations and the distributivity of G1. Similarly for
the other three walls. Thus the two diagonals must be equal. Since the left diagrams’s diagonal is
((α · β) ;(α′ · β′))C by definition of ;, this proves (α ;α′) · (β ;β′) equals (α · β) ;(α′ · β′).

Lastly, this process preserves identities:

(id F · id G)C = G(id F (C)) ; id G(F (C)) = id G(F (C)) ; id G(F (C)) = id G(F (C)) = (id F ;G)C

Associativity a: We need to show that (F ;G) ;H equals F ;(G ;H), which is already known since Cat is a
category and so composition is associative, and that (α · β) · γ equals α · (β · γ). Consider the following
cubes:

(a)

H1(G1(F1(C))) H1(G1(F2(C)))

H1(G2(F1(C))) H1(G2(F2(C)))

H2(G1(F1(C))) H2(G1(F2(C)))

H2(G2(F1(C))) H2(G2(F2(C)))

H1(G1(αC ))

H2(G1(αC ))

H1(G2(αC ))

H2(G2(αC ))

H1(βF1(C)) H1(βF2(C))

H2(βF1(C)) H2(βF2(C))

γ
G

1 (F
1 (C

))

γ
G

1 (F
2 (C

))

γ
G

2 (F
1 (C

))

γ
G

2 (F
2 (C

))

(b)

γ
G
1 (F

1 (C
))

γ
G
2 (F

2 (C
))

H
1 ((α · β)C )

H
2 ((α · β)C )

(c)

H1(G1(αC ))

H1(G1(αC ))

(β
· γ

)
F

1 (C
)

(β
· γ

)
F

2 (C
)

Cube (a) commutes due to naturality and functoriality. It indicates the missing labels for cubes (b) and (c),
which also commute by the definition of ·. ((α · β) · γ)C is defined to be the diagonal of cube (b), and
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(α · (β · γ))C is defined to be the diagonal of cube (c). Both of those are the diagonals of cube (a) and so
must be equal, proving associativity.

Identities i : For each small category C, we need to select an object of C_ C. We select the identity functor.

Identity i: We need to show that IdC ;F = F = F ; IdD, which is true since Cat is a category and we are using
its identities, and that IdC · α = α = α · IdD:

(id IdC
· α)C = F1(id C ) ;αIdC(C) = id F1(C) ;αC = αC = αC ; id F2(C) = IdD(αC ) ; id IdD(F2(C)) = (α · id IdD

)C
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