Security ## Ross Tate October 29, 2014 **Exercise 1.** Prove that the 2-category **MULTICAT** is powered. I am content if you can construct the power multicategory $\mathbf{E} \pitchfork \mathbf{M}$ and the necessary functor $\mathbf{E} \to \mathbf{M}_{\mathbf{MULTICAT}}(\mathbf{E} \pitchfork \mathbf{M}, \mathbf{M})$ and show that any multicategory \mathbf{D} with a functor $\mathbf{E} \to \mathbf{M}_{\mathbf{MULTICAT}}(\mathbf{D}, \mathbf{M})$ has a 1-cell from \mathbf{D} to $\mathbf{E} \pitchfork \mathbf{M}$. The remaining requirements need to hold but do not need to be proved. *Proof.* Let $\mathbf{C}_{\mathbf{M}}$ be the category whose objects are the same as \mathbf{M} and whose morphisms are the unary morphisms of \mathbf{M} with the obvious identity and composition. Suppose F_1, \ldots, F_n and G are functors from \mathbf{E} to $\mathbf{C}_{\mathbf{M}}$, then let a multitransformation α from \vec{F} to G map an object \mathcal{E} of \mathbf{E} to morphism of \mathbf{M} from $[F_1(\mathcal{E}), \ldots, F_n(\mathcal{E})]$ to $G(\mathcal{E})$, and let α be natural if for every morphism $e: \mathcal{E} \to \mathcal{E}'$ of \mathbf{E} the composition $\alpha_{\mathcal{E}}; G(e)$ equals the composition $[F_1(e), \ldots, F_n(e)]; \alpha_{\mathcal{E}'}$. Define $\mathbf{E} \pitchfork \mathbf{M}$ to be the category whose objects are functors from \mathbf{E} to $\mathbf{C}_{\mathbf{M}}$ and whose morphisms are natural multitransformations with composition and identity each defined pointwise (which obviously always results in a natural multitransformation). Given an object \mathcal{E} of \mathbf{E} , let $\pi_{\mathcal{E}} : \mathbf{E} \pitchfork \mathbf{M} \to \mathbf{M}$ map the functor $F : \mathbf{E} \to \mathbf{C}_{\mathbf{M}}$ to the object $F(\mathcal{E})$ and the multitransformation α to the morphism $\alpha_{\mathcal{E}}$, which defines a functor of multicategories because composition and identity in $\mathbf{E} \pitchfork \mathbf{M}$ are defined pointwise. Given a morphism $e : \mathcal{E} \to \mathcal{E}'$ of \mathbf{E} , let $\pi_e : \pi_{\mathcal{E}} \Rightarrow \pi_{\mathcal{E}'}$ be the transformation mapping a functor $F : \mathbf{E} \to \mathbf{C}_{\mathbf{M}}$ to the morphism $F(e) : [F(\mathcal{E})] \to F(\mathcal{E}')$, which is natural due to the naturality requirement on the morphisms of $\mathbf{E} \pitchfork \mathbf{M}$. $\pi : \mathbf{E} \to \mathbf{M}_{\mathbf{MULTICAT}}(\mathbf{E} \pitchfork \mathbf{M}, \mathbf{M})$ is functorial because each object of $\mathbf{E} \pitchfork \mathbf{M}$ is functorial.