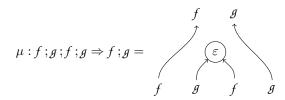
Monads

Ross Tate

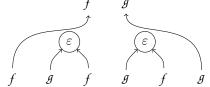
October 6, 2014

Exercise 1. Prove that for any 2-category \mathbf{C} and any adjunction $f \dashv g$ in \mathbf{C} , one can build a monad in \mathbf{C} whose underlying morphism is f ; g.

Proof. Let f be from \mathcal{C} to \mathcal{C} , and let η and ε be the unit and counit of the adjunction. Then $\langle \mathcal{C}, f; g, \mu, \mathfrak{a}, \eta, \mathfrak{i} \rangle$ is an adjunction, where μ , \mathfrak{d} , and \mathfrak{i} are defined as follows:



 $\mathfrak a\,$ is given by the fact that both compositions result in the following string diagram:



Exercise 2. Prove that, in the 2-category **CAT**, for every monad \mathcal{M} with underlying functor M on a category **C** there is some adjunction $F \dashv U$ such that M equals F; U. Hint: use the underlying functor $U : \mathbf{Alg}(\mathcal{M}) \to \mathbf{C}$ as the right adjoint.

Proof. Let \mathcal{M} be $\langle \mathbf{C}, M, \mu, \mathfrak{d}, \eta, \mathbf{i} \rangle$. Let $U : \mathbf{Alg}(\mathcal{M}) \to \mathbf{C}$ be the underlying functor of $\mathbf{Alg}(\mathcal{M})$. Let $F : \mathbf{C} \to \mathbf{Alg}(\mathcal{M})$ be the functor mapping each object \mathcal{C} to the algebra $\langle M(\mathcal{C}), \mu_{\mathcal{C}}, \mathfrak{a}, \mathbf{i} \rangle$ and each morphism $f : \mathcal{C}_1 \to \mathcal{C}_2$ to the algebra morphism $\langle M(f), \mathfrak{d}_f \rangle$ where $\mathfrak{d}_f : M(M(f)) : \mu_{\mathcal{C}_2} = \mu_{\mathcal{C}_1} : M(f)$ comes from naturality of μ . The fact that F is functorial comes from functoriality of M. F : U then equals M, so we can define the unit of the adjunction $\eta : \mathbf{C} \Rightarrow F : U$ as the unit of the monad $\eta : \mathbf{C} \Rightarrow M$. For the counit ε , we map each algebra $\langle \mathcal{C}, a, \mathfrak{d}_a, \bullet \rangle$ to the morphism of algebras $\langle a, \mathfrak{d}_a \rangle : U(F(\langle \mathcal{C}, a, \mathfrak{d}_a, \bullet \rangle)) = \langle M(\mathcal{C}), \mu_{\mathcal{C}}, \mathfrak{d}, \mathfrak{i} \rangle \to \langle \mathcal{C}, a, \mathfrak{d}_a, \bullet \rangle$. ε is natural because all algebra morphisms are distributive. Lastly, $((\eta \cdot F) : (F \cdot \varepsilon))_{\mathcal{C}}$ is defined as $M(\eta_{\mathcal{C}}) : \mu_{\mathcal{C}}$ which equals the identity since η is an identity of μ , and $((U \cdot \eta) : (\varepsilon \cdot U))_{\langle \mathcal{C}, a, \bullet, \bullet, \bullet \rangle}$ is defined as $\eta_{\mathcal{C}} : a$ which equals the identity by \mathfrak{i}_a . Thus, $\langle \mathbf{C}, F, U, \eta, \varepsilon, \bullet, \bullet \rangle$ forms an adjunction with F : U equal to M.