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Exercise 1. Prove that for any object A of any category C, the object A &> (if it exists) is isomoprhic to A.

Proof. Let f : A → A & > be defined as 〈id A , 〈〉〉. Let g : A & > → A be defined as πA . f ; g = 〈id A , 〈〉〉 ;πA = id A
by the nature of projections, proving one direction. g ; f ;π> : A & > → > equals id A&> ;π> : A & > → > since all
morphisms from the same domain to > are equal by the nature of terminal objects. Also, g ; f ;πA = πA ;〈id A , 〈〉〉 ;πA =
πA ; id A = πA = id A&> ;πA . Thus, since all morphisms to a product that behave the same after being followed by
both projections must be equal, we have g ; f = id A&>. So, f and g are inverses of each other, making A isomorphic
to A &>.

Exercise 2. Prove that, in any 2-category, if morphisms C1
f1−→ C2 and C2

f2−→ C3 are both left adjoints, then their
composition f1 ; f2 is also a left adjoint.

Proof. Let 〈C1, C2, f1, g1, η1, ε1, f1, g1〉 and 〈C2, C3, f2, g2, η2, ε2, f2, g2〉 be some adjunctions that f1 and f2 are the left
adjoints of. Then 〈C1, C3, f1 ; f2, g2 ; g1, η, ε, f, g〉 is an adjuction that f1 ; f2 is the left adjoint of, where η, ε, f, and g
are defined as follows:

η : C1 ⇒ f1 ; f2 ; g2 ; g1 =

f1 f2 g2 g1

η2

η1

ε : g2 ; g1 ; f1 ; f2 ⇒ C3 =

g2 g1 f1 f2

ε1

ε2

f is given by

f1 f2

η2

η1

ε2

ε1

f1 f2

g2

g1

equals

f1 f2

f1 f2

due to f1 and f2.

g is given by

g1g2

η2

η1

ε2

ε1

g1g2

f2

f1

equals

g1g2

g1g2

due to g1 and g2.
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Exercise 3. The monoid A & B is commutative if both A and B are commutative, and in that case is (with
the appropriate projection homomorphisms) also the product of A and B in CommMon. Prove that there are
morphisms κA and κB demonstrating that A& B is also the coproduct of A and B in CommMon. That is, prove
that CommMon has biproducts, meaning it has products and coproducts and they coincide on objects.

Proof. Define the underlying function of κA : A → A & B to be λa. 〈a, eB〉. This clearly preserves identity and
multilplication, making κA a monoid homomorphism. Similarly, κB = 〈λb. 〈eA, b〉, �, �〉.

Given a monoid C and monoid homomorphisms fA : A → C and fB : B → C, define the underlying function
of [f ] : A & B → C to be λ〈a, b〉. fA(a) +C fB(b). We have to show this is a monoid morphism. It distributes
since [f ](〈a1, b1〉+A&B 〈a2, b2〉) = [f ](〈a1 +A a2, b1 +B b2〉) = fA(a1 +A a2) +C fB(b1 +B b2) = fA(a1) +C fA(a2) +C
fB(b1) +C fB(b2) = fA(a1) +C fB(b1) +C fA(a2) +C fB(b2) = [f ](〈a1, b1〉) +C [f ](〈a2, b2〉). It preserves identity since
[f ](eA&B) = [f ](〈eA, eB〉) = fA(eA) +C fB(eB) = eC +C eC = eC .

Given an a : A, [f ](κA(a)) = [f ](〈a, eB〉) = fA(a) + fB(eB) = fA(a) + eC = fA(a), so κA ;[f ] equals fA. Similarly,
κB ;[f ] equals fB.

Lastly, suppose g : A & B → C also has the property that κA ; g equals fA and κB ; g equals fB. To be a
monoid homomorphism, since for any a : A and b : B the sum 〈a, eB〉 +A&B 〈eA, b〉 equals 〈a, b〉, we know that
g(〈a, b〉) = g(〈a, eB〉 +A&B 〈eA, b〉) = g(κA(a) +A&B κB(b)) = g(κA(a)) +C g(κB(b)) = fA(a) +C fB(b) = [f ](〈a, b〉).
Thus, any such g must equal [f ], proving uniqueness.
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