Types ## Ross Tate ## October 24, 2014 **Definition** ((Binary) Tensor $\mathcal{A} \otimes \mathcal{B}$ (where \mathcal{A} and \mathcal{B} are objects of a multicategory \mathbf{M})). An object of \mathbf{M} , denoted $\mathcal{A} \otimes \mathcal{B}$, with a morphism from $[\mathcal{A}, \mathcal{B}]$ to $\mathcal{A} \otimes \mathcal{B}$, denoted (unfortunately) \langle , \rangle , such that for any morphism f as in the left diagram below there exists a unique morphism f' as in the right diagram below such that the two diagrams depict equal morphisms. **Definition** (Nullary Tensor 1 (in a multicategory \mathbf{M})). An object of \mathbf{M} , denoted 1, with a nullary morphism to 1, denoted (unfortunately) $\langle \rangle$, such that for any morphism f as in the left diagram below there exists a unique morphism f' as in the right diagram below such that the two diagrams depict equal morphisms. **Definition** (Representable Multicategory). A multicategory with the property that a nullary tensor exists and a binary tensor exists for all pairs of objects. **Theorem.** There is a 2-functor on **MULTICAT**, called \mathbb{L} , with a 2-transformation $[\bullet]$: **MULTICAT** $\Rightarrow \mathbb{L}$, such that a multicategory \mathbf{M} is representable if and only if the 1-cell $[\bullet]_{\mathbf{M}}$ is a right adjoint. Given a multicategory \mathbf{M} , the objects of $\mathbb{L}(\mathbf{M})$ are lists of objects of \mathbf{M} , and the morphisms of $\mathbb{L}(\mathbf{M})$ from $[\vec{c}_1, \ldots, \vec{c}_n]$ to \vec{c} are a list \vec{f} of morphisms of \mathbf{M} such that the list of outputs of \vec{f} equals \vec{c} and flattening the list of lists of inputs of \vec{f} equals $\vec{c}_1 + + \ldots + + \vec{c}_n$. $\eta_{\mathbf{M}}$ is the functor of multicategories mapping an object C of \mathbf{M} to the object [C] of $\mathbb{L}(\mathbf{M})$ and mapping a morphism f to the morphism [f], which has the appropriate type because singleton is a unit of flatten. **Definition** (Left Exponential $\mathcal{A} \multimap \mathcal{B}$ (where \mathcal{A} and \mathcal{B} are objects of a multicategory \mathbf{M})). An object of \mathbf{M} , denoted $\mathcal{A} \multimap \mathcal{B}$, with a morphism from $[\mathcal{A}, \mathcal{A} \multimap \mathcal{B}]$ to \mathcal{B} , denoted *eval*, such that for any morphism f as in the left diagram below there exists a unique morphism, denoted λf , as in the right diagram below such that the two diagrams depict equal morphisms. **Definition** (Left-Closed Multicategory). A multicategory with the property that left exponentionals exist for all pairs of objects. Remark. There are analogous definitions for right exponential (denoted \sim) and right-closed. A multicategory that is both left-closed and right-closed is simply called closed. For symmetric multicategories, left exponentials are always isomorphic to right exponentials, so being left-closed implies being right-closed and vice versa. Remark. Given a category \mathbf{C} with finite products (including terminal object), one can construct a multicategory $\mathbf{C}_{\&}$ with the same objects as \mathbf{C} such that a morphism in $\mathbf{C}_{\&}$ from $[\mathcal{C}_1, \ldots, \mathcal{C}_n]$ to \mathcal{C} is a morphism in \mathbf{C} from $\&_{i:n}\mathcal{C}_i$ to \mathcal{C} . $\mathbf{C}_{\&}$ will always be representable (and symmetric); the tensor of \mathcal{A} and \mathcal{B} is $\mathcal{A} \& \mathcal{B}$. **Definition** (Cartesian-Closed Category). A category C with finite products such that $C_{\&}$ is closed. **Theorem.** Suppose \mathbf{E} is finite. If \mathbf{C} has all limits with a finite scheme \mathbf{S} , then $\mathbf{E} \to \mathbf{C}$ has all limits with the scheme \mathbf{S} (constructed pointwise). If \mathbf{C} has all colimits with a finite scheme \mathbf{S} , then $\mathbf{E} \to \mathbf{C}$ has all colimits with the scheme \mathbf{S} (constructed pointwise). If \mathbf{C} is finitely complete and cartesian-closed, then $\mathbf{E} \to \mathbf{C}$ is also cartesian-closed. Given objects \mathcal{A} and \mathcal{B} of $\mathbf{E} \to \mathbf{C}$, the exponential $\mathcal{A} \to \mathcal{B}$ is constructed by the following process. TODO: Twisted arrow category under \mathcal{E} .