Transpositions

Ross Tate

September 22, 2014

Definition (G-Structured Arrow for a functor $G: \mathbf{D} \to \mathbf{C}$ and an object $C: \mathbf{C}$). An object $\mathcal{D}: \mathbf{D}$ and a morphism $f: \mathcal{C} \to G(\mathcal{D})$. A morphism of G-structured arrows from $\mathcal{C} \xrightarrow{f_1} G(\mathcal{D}_1)$ to $\mathcal{C} \xrightarrow{f_2} G(\mathcal{D}_2)$ is a morphism $\mathcal{D}_1 \xrightarrow{d} \mathcal{D}_2$ such that $f_1: G(\mathcal{A})$ equals f_2 .

Definition (F-Costructured Arrow for a functor $F: \mathbf{C} \to \mathbf{D}$ and an object $\mathcal{D}: \mathbf{D}$). An object $\mathcal{C}: \mathbf{C}$ and a morphism $g: F(\mathcal{C}) \to \mathcal{D}$. A morphism of F-structured arrows from $F(\mathcal{C}_1) \xrightarrow{g_1} \mathcal{D}$ to $F(\mathcal{C}_2) \xrightarrow{g_2} \mathcal{D}$ is a morphism $\mathcal{C}_1 \xrightarrow{c} \mathcal{C}_2$ such that $F(c): g_2$ equals g_1 .

Definition (Adjunction (via Universal (Co-)Structured Arrows)). A pair of functors $F: \mathbf{C} \to \mathbf{D}$ and $G: \mathbf{D} \to \mathbf{C}$ with either (the following two conditions are equivalent)

- for each object $\mathcal{C}: \mathbf{C}$ a morphism $\mathcal{C} \xrightarrow{\eta_{\mathcal{C}}} G(F(\mathcal{C}))$ with the property that for any object $\mathcal{D}: \mathbf{D}$ and morphism $f: \mathcal{C} \to G(\mathcal{D})$ there exists a unique morphism $f^{\leftarrow}: F(\mathcal{C}) \to \mathcal{D}$ such that $\eta_{\mathcal{C}}; G(f^{\leftarrow})$ equals f
- for each object $\mathcal{D}: \mathbf{D}$ a morphism $F(G(\mathcal{D})) \xrightarrow{\varepsilon_{\mathcal{D}}} \mathcal{D}$ with the property that for any object $\mathcal{C}: \mathbf{C}$ and morphism $g: F(\mathcal{C}) \to \mathcal{D}$ there exists a unique morphism $g^{\to}: \mathcal{C} \to G(\mathcal{D})$ such that $F(g^{\to}); \varepsilon_{\mathcal{D}}$ equals g

Remark. η is called the unit. ε is called the counit.

Definition (Adjunction (via Transposition)). A pair of functors $F: \mathbf{C} \to \mathbf{D}$ and $G: \mathbf{D} \to \mathbf{C}$ with a bijection $\forall \mathcal{C}: \mathbf{C}, \mathcal{D}: \mathbf{D}. (F\mathcal{C} \to \mathcal{D}) \rightleftharpoons^{\mathbf{C}} (\mathcal{C} \to G\mathcal{D})$ that is natural with respect to the quantified \mathcal{C} and \mathcal{D} , meaning the

following holds: $\forall F C_2 \xrightarrow{g} \mathcal{D}_1 : \mathbf{D}, C_1 \xrightarrow{c} C_2 : \mathbf{C}, \mathcal{D}_1 \xrightarrow{d} \mathcal{D}_2. (Fc; g; d)^{\rightarrow} = c; g^{\rightarrow}; Gd, \text{ or equivalently } \forall C_2 \xrightarrow{f} G\mathcal{D}_1 : \mathbf{C}, C_1 \xrightarrow{c} C_2 : \mathbf{C}, \mathcal{D}_1 \xrightarrow{d} \mathcal{D}_2. (c; f; Gd)^{\leftarrow} = Fc; f^{\leftarrow}; d.$

Exercise 1. Prove that the above two definitions of adjunction are equivalent (i.e. there is a bijection between them).

Definition (Left/Right Adjoint). Given an adjuntion with F and G as above, F is called the left adjoint and G is called the right adjoint. A functor is called a left/right adjoint if it is the left/right adjoint of some adjunction.

Remark. The reason F is the left whereas G is the right is that the isomorphism is between arrows with F applied to the domain (i.e. to the left of \rightarrow) and arrows with G applied to the codomain (i.e. to the right of \rightarrow). We use $\stackrel{\rightarrow}{}$ because changes morphisms from the left form into the right form, and $\stackrel{\leftarrow}{}$ does the reverse.

Exercise 2. Suppose functors F and G have two ways to instantiate η , ε , or the isomorphism. Prove that these two instantiations must be isomorphic to each other according to the appropriate notion of isomorphism.

Notation. $F \dashv G$ means that F and G are the left and right adjoints of some adjunction.

Example. A subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$ is reflective precisely when I is a right adjoint. The left adjoint is R. The unit is the reflection arrows.

Example. The functor $F: \mathbf{Set} \to \mathbf{Mon}$ mapping a set X to $(\mathbb{L}X)_{++}$ is left adjoint to the underlying functor $U: \mathbf{Mon} \to \mathbf{Set}$.

Example. The functor $F: \mathbf{Set} \to \mathbf{Alg}(2,0)$ mapping a set X to the algebra of expressions with a binary operation, a nullary operation, and all free variables in X, and mapping functions f to the algebra homomorphism simply using f to rename variables in expressions, is left adjoint to the underlying functor $U: \mathbf{Alg}(2,0) \to \mathbf{Set}$. If θ is a function from X to elements of some algebra, then f^{\leftarrow} is the algebra homomorphism mapping expressions to their evaluation in that algebra using the valuation θ for variables.

Remark. In general, a left adjoint to an underlying functor is called a free functor. Consequently, $(LX)_{++}$ is called the free monoid of X.

Exercise 3. Show that the inclusion functor $\mathbf{Set} \hookrightarrow \mathbf{Rel}$ has a right adjoint. This means \mathbf{Set} is a *coreflective* subcategory of \mathbf{Rel} .