Productors

Ross Tate

October 17, 2014

Definition (Productor of an Effector $\langle E, \stackrel{\circ}{\mapsto}, \bullet, \bullet \rangle$ for a 2-Category **C**). A tuple $\langle \mathcal{C}, m, \mu, \mathfrak{a}, \mathfrak{i} \rangle$ whose components have the following types:

Object \mathcal{C} is an object of \mathbf{C} Morphisms m maps each $\varepsilon : E$ to a morphism m_{ε} of \mathbf{C} from \mathcal{C} to \mathcal{C} Join μ maps each related pair $[\varepsilon_1, \ldots, \varepsilon_n] \stackrel{3}{\to} \varepsilon$ to a 2-cell $\mu_{[\varepsilon_1, \ldots, \varepsilon_n]}^{\varepsilon}$ of \mathbf{C} from $m_{\varepsilon_1} : \ldots : m_{\varepsilon_n} \Rightarrow m_{\varepsilon}$ Associativity \mathfrak{a} proves $\begin{array}{c}
m_{\varepsilon} \\
m_{\varepsilon_1} \\
m_{\varepsilon_1} \\
m_{\varepsilon_m}
\end{array}$ equals

Exercise 1. Prove that a monad is a productor for the effector with one element and with $\stackrel{\$}{\mapsto}$ always true.

Exercise 2. Every effector corresponds to a thin multicategory, which in turn corresponds to an opetory with 1 object and at most one 2-cell from any domain to any codomain. Prove that a productor for an effector is simply a functor from the corresponding opetory.

Definition (Productoid of an Effectoid $\langle E, \varepsilon \mapsto \bullet, \leq, \bullet, \bullet, \bullet \rangle$ for a 2-Category C). A tuple $\langle C, m, \mu_{\varepsilon}, \mu_{\leq}, \mu_{\varsigma}, \mathfrak{c} \rangle$ whose components have the following types:

Object C is an object of C

Morphisms m maps each $\varepsilon : E$ to a morphism m_{ε} of \mathbb{C} from ε to ε

Identity i is a proof that $\forall \varepsilon : E. \ \mu_{[\varepsilon]}^{\varepsilon} = i \mathcal{U}_{m_{\varepsilon}} : m_{\varepsilon} \Rightarrow m_{\varepsilon}$

Unit μ_{ε} maps each $\varepsilon : E$ satisfying $\varepsilon \mapsto \varepsilon$ to a 2-cell $\mu_{\varepsilon}^{\varepsilon}$ of \mathbf{C} from $id_{\varepsilon} \Rightarrow m_{\varepsilon}$

Coercion μ_{\leq} maps each $\varepsilon, \varepsilon' : E$ satisfying $\varepsilon \leq \varepsilon'$ to a 2-cell $\mu_{\varepsilon \leq}^{\varepsilon'}$ of \mathbf{C} from $m_{\varepsilon} \Rightarrow m_{\varepsilon'}$

Join $\mu_{\mathfrak{F}}$ maps each $\varepsilon_1, \varepsilon_2, \varepsilon: E$ satisfying $\varepsilon_1 \mathfrak{F} \varepsilon_2 \mapsto \varepsilon$ to a 2-cell $\mu_{\varepsilon_1 \mathfrak{F} \varepsilon_2}^{\varepsilon}$ of \mathbf{C} from $m_{\varepsilon_1} \mathfrak{F} m_{\varepsilon_2} \Rightarrow m_{\varepsilon_2} \mathfrak{F} m_{\varepsilon_2} = m_{\varepsilon_1} \mathfrak{F} m_{\varepsilon_2} \mathfrak{F} m$

Theorem. If an effector is semi-strict, then there is a bijection between the set of productors for that effector and the set of productoids for the effectoid corresponding to that semi-strict effector. The bijection preserves the object C and the mapping m. The 2-cells $\mu_{\varepsilon}^{\varepsilon}$ correspond to the 2-cells $\mu_{\varepsilon}^{\varepsilon}$; the 2-cells $\mu_{\varepsilon\leq}^{\varepsilon}$ correspond to the 2-cells $\mu_{\varepsilon}^{\varepsilon}$; and the 2-cells $\mu^{\varepsilon}_{\varepsilon_1;\varepsilon_2}$ correspond to the 2-cells $\mu^{\varepsilon}_{[\varepsilon_1,\varepsilon_2]}$.

Definition (Postmodule of a Productor). A tuple $\langle \mathcal{R}, r, \rho, \mathfrak{d} \rangle$ whose components have the following types:

