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Definition (Productor of an Effector (E,+>,.,.) for a 2-Category C). A tuple (¢, m, j1,a,i) whose components have
the following types:

Object C is an object of C
Morphisms m maps each ¢ : E to a morphism m. of C from C to C
Join ;1 maps each related pair [e1, ..., &p,] Yy € to a 2-cell /erl _____ en] of C from m., ;...;me, = me
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Exercise 1. Prove that a monad is a productor for the effector with one element and with N always true.

Exercise 2. Every effector corresponds to a thin multicategory, which in turn corresponds to an opetory with 1
object and at most one 2-cell from any domain to any codomain. Prove that a productor for an effector is simply a
functor from the corresponding opetory.

Definition (Productoid of an Effectoid (E,g + o, <,e3e — e,.) for a 2-Category C). A tuple (C, m, fig, fi<, i, C)
whose components have the following types:

Object C is an object of C

Morphisms m maps each € : E to a morphism m. of C from C to C

Unit p; maps each € : E satisfying ¢ — € to a 2-cell y; of C from id, = m.
Coercion p< maps each ¢,¢’ : E satisfying € < ¢’ to a 2-cell uilg of C from m. = m./

Join y; maps each €1, 2, € : E satisfying €13e2 — ¢ to a 2-cell HEse, of C from m., ;m., = m.




Coherence ¢ is a proof that pg_ always equals id,. and the following equalities all hold whenever well defined:
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In other words, equals
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Third, id - :> e :> e equals id - :> Mer.
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Theorem. If an effector is semi-strict, then there is a bijection between the set of productors for that effector and
the set of productoids for the effectoid corresponding to that semi-strict effector. The bijection preserves the object C
and the mapping m. The 2-cells us correspond to the 2-cells u[e]; the 2-cells Mi/g correspond to the 2-cells p‘[i] ; and
the 2-cells piz,,., correspond to the 2-cells puf,, -

Definition (Postmodule of a Productor). A tuple (®,r, p,0) whose components have the following types:

Object ®: C
Morphism r: ¢ — R

Action p: A mapping from each € : £ to a 2-cell p. : m.;r =1
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Distributivity 0: A proof that ¢ R equals ¢ R .
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