Functors

Ross Tate

September 8, 2014

Definition ((Biased) (**Set**-enriched) (Covariant) Functor from $\langle O_{\mathbf{C}}, M_{\mathbf{C}}, ;, \iota, id_{\mathbf{C}}, \iota \rangle$ to $\langle O_{\mathbf{D}}, M_{\mathbf{D}}, ;_{\mathbf{D}}, \iota, id_{\mathbf{D}}, \iota \rangle$. A tuple $\langle F_O, F_M, \mathfrak{d}, \mathfrak{i} \rangle$ where the components have the following types:

Function on Objects $F_O: O_C \rightarrow O_D$

Function on Morphisms $F_M: \forall \mathcal{C}_1, \mathcal{C}_2: O_{\mathbf{C}}. M_{\mathbf{C}}(\mathcal{C}_1, \mathcal{C}_2) \to M_{\mathbf{D}}(F_O(\mathcal{C}_1), F_O(\mathcal{C}_2))$ (objects implicit)

Distributivity \mathfrak{d} : $\forall \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3 : O_{\mathbf{C}}. \ \forall m_1 : M_{\mathbf{C}}(\mathcal{C}_1, \mathcal{C}_2), m_2 : M_{\mathbf{C}}(\mathcal{C}_2, \mathcal{C}_3). \ F_M(m_1) :_{\mathbf{D}} F_M(m_2) = F_M(m_1 :_{\mathbf{C}} m_2)$

Identity i: $\forall C : O_{\mathbf{C}}$. $id_{\mathbf{D}} = F_M(id_{\mathbf{D}})$

Notation. We represent both F_O and F_M with just F.

Notation. When multiple categories (such as C and D) are present, we represent all their morphism types (e.g. M_C and M_D) with just M or with the infix operator \rightarrow .

Notation. When multiple categories (such as C and D) are present, we represent all their composition operators (e.g. ;_C and ;_D) with just ;.

Notation. When multiple categories (such as \mathbf{C} and \mathbf{D}) are present, we represent all their identity operators (e.g. $id_{\mathbf{C}}$ and $id_{\mathbf{D}}$) with just id.

Notation. We use $C : \mathbf{C}$ to denote $C : O_{\mathbf{C}}$.

Remark. With these notations, the above definitions can be rephrased as: A functor from **C** to **D** is a tuple $\langle F, F, \mathfrak{d}, \mathfrak{i} \rangle$ where the components have the following types:

Function on Objects $F: O_{\mathbf{C}} \to O_{\mathbf{D}}$

Function on Morphisms $F: \forall \mathcal{C}_1, \mathcal{C}_2 : \mathbf{C}. \ \mathcal{C}_1 \to \mathcal{C}_2 \to F(\mathcal{C}_1) \to F(\mathcal{C}_2)$ (objects implicit)

Distributivity $\mathfrak{d}: \forall \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3: \mathbf{C}. \forall \mathcal{C}_1 \xrightarrow{m_1} \mathcal{C}_2, \mathcal{C}_2 \xrightarrow{m_2} \mathcal{C}_3. F(m_1); F(m_2) = F(m_1; m_2)$

Identity i: $\forall C : \mathbf{C}$. id = F(id)

Example. Prost to Set: $\langle \lambda \tau, \tau, \lambda \langle \tau_1, \tau_2 \rangle, \lambda \langle f, \cdot \rangle, f, \cdot, \cdot \rangle$

Mat to Set: $\langle \lambda n. \mathbb{R}^n, \lambda \langle n_1, n_2 \rangle. \lambda M. \lambda \vec{x}. M \cdot \vec{x}, ., . \rangle$

 \triangle to Prost: $\langle \lambda n. \langle n, \leq, \bullet, \bullet \rangle, \lambda \langle n_1, n_2 \rangle. \lambda \sigma. \langle \sigma, \bullet \rangle, \bullet, \bullet \rangle$

 ω to Δ : $\langle \lambda n. n, \lambda \langle n_1, n_2 \rangle$. λ Ite. $\lambda n. n$ as m_2 using Ite, \bullet , \bullet

Set to Rel: $\langle \lambda \tau. \tau, \lambda \langle \tau_1, \tau_2 \rangle. \lambda f. \lambda \langle t_1, t_2 \rangle. f(t_1) = t_2, ., . \rangle$

Rel to Set: $\langle \mathbb{P}, \lambda \langle \tau_1, \tau_2 \rangle$. $\lambda \phi$. λT_1 . $\{t_2 : \tau_2 \mid \exists t_1 : \tau_1 . t_1 \in T_1 \land \phi(t_1, t_2)\}, \bullet, \bullet \rangle$

Mon_b to Alg(2,0): $\langle \lambda \langle M, *, \bullet, e, \bullet \rangle$. $\langle M, *, e \rangle$, $\lambda \langle M_1, M_2 \rangle$. $\lambda \langle f, \bullet, \bullet \rangle$. $\langle f, \bullet \rangle$, $\bullet, \bullet \rangle$

Mon_u to Alg($\langle \mathbb{N}, \lambda n. \, \mathbb{n} \rangle$): $\langle \lambda \langle M, \prod, \bullet \rangle . \, \langle M, \lambda n. \, \lambda(m_i)_{i \in \mathbb{n}}. \, \prod [m_1, \ldots, m_n], \bullet \rangle, \lambda \langle M_1, M_2 \rangle . \, \lambda \langle f, \bullet \rangle . \, \langle f, \bullet \rangle, \bullet, \bullet \rangle$

Prost to Rel(2): $\langle \lambda \langle \tau, R, . \rangle$. $\langle \tau, R \rangle$, $\lambda f. f. . . . \rangle$

Exercise 1. Prove that there are functors from **Set** to **Set** mapping a set S to $\mathbb{L}S$, to $\mathbb{S}S$, and to $\mathbb{P}S$.

Exercise 2. Prove that the set of functors from 1 to C is isomorphic to O_C .

Exercise 3. Prove that the set of functors from 2 to C is isomorphic to $\sum_{C_1,C_2:C} C_1 \to C_2$.

Exercise 4. Prove that there is a category **CAT** (of a higher universe) of categories whose objects are categories and whose morphisms are functors, such that there exists a functor from **CAT** to **SET** (i.e. **Set** for a higher universe) mapping categories to their set of objects and functors to their functions on objects.

Definition (Cat). The category of "small" categories (categories where O is an element of Type rather than Type₁) and functors between them.

Definition ((Biased) (**Set**-enriched) Contravariant Functor from $\langle O_{\mathbf{C}}, M_{\mathbf{C}}, ;, \iota, id_{\mathbf{C}}, \cdot \rangle$ to $\langle O_{\mathbf{D}}, M_{\mathbf{D}}, ;_{\mathbf{D}}, \iota, id_{\mathbf{D}}, \cdot \rangle$). A tuple $\langle F_O, F_M, \mathfrak{d}, \mathfrak{i} \rangle$ where the components have the following types:

Function on Objects $F: O_{\mathbf{C}} \to O_{\mathbf{D}}$

Function on Morphisms $F: \forall \mathcal{C}_1, \mathcal{C}_2 : \mathbf{C}. \ \mathcal{C}_1 \to \mathcal{C}_2 \to F(\mathcal{C}_2) \to F(\mathcal{C}_1)$ (objects implicit)

Distributivity 0: $\forall C_1, C_2, C_3 : \mathbf{C}. \ \forall C_1 \xrightarrow{m_1} C_2, C_2 \xrightarrow{m_2} C_3. \ F(m_2) ; F(m_1) = F(m_1; m_2)$

Identity i: $\forall C : \mathbf{C}. id = F(id)$

Exercise 5. Prove that there is a contravariant functor from **Set** to **Set** mapping a set S to $\mathbb{P}S$.

Exercise 6. Prove that there is a contravariant functor from Rel to Rel whose object is component is the identity function.

Exercise 7. Prove that there is a contravariant functor from Sig to CAT mapping Ω : Sig to Alg (Ω) : CAT.

Exercise 8. Prove that there is a contravariant functor from Sig to CAT mapping Φ : Sig to Rel (Φ) : CAT.