Monad Algebras ## Ross Tate ## October 16, 2014 **Definition** (Algebra of a **CAT**-Monad $\langle \mathbf{C}, M, \mu, \bullet, \eta, \bullet \rangle$). A tuple $\langle \mathcal{C}, a, \mathfrak{a}, \mathfrak{i} \rangle$ of the following form: Underlying Object C: C Operation a: $M(\mathcal{C}) \to \mathcal{C}$ **Associativity** \mathfrak{a} : M(a); $a = \mu_{\mathcal{C}}$; $a : M(M(\mathcal{C})) \to \mathcal{C}$ **Identity** i: $id_{\mathcal{C}} = \eta_{\mathcal{C}}$; $a : \mathcal{C} \to \mathcal{C}$ Remark. The above definition is also known as an Eilenberg-Moore algebra. **Example.** The algebras for \mathbb{L} are the (unbiased) monoids. The algebras for \mathbb{M} are the (unbiased) commutative monoids. The algebras for \mathbb{S} are the (unbiased) idempotent commutative monoids. **Definition** (Morphism of Monad Algebras from $\langle \mathcal{C}_1, a_1, \bullet, \bullet \rangle$ to $\langle \mathcal{C}_2, a_2, \bullet, \bullet \rangle$). A tuple $\langle f, \mathfrak{d} \rangle$ where f is a morphism from \mathcal{C}_1 to \mathcal{C}_2 and \mathfrak{d} is a proof that M(f); a_2 equals a_1 ; f. **Example.** Just like how an algebra for \mathbb{L} corresponds to a monoid, a morphism of \mathbb{L} -algebras corresponds to a monoid homomorphism. **Definition** ($Alg(\mathcal{M})$ where \mathcal{M} is a **CAT**-Monad). The category whose objects are \mathcal{M} -algebras and whose morphisms are \mathcal{M} -algebra morphisms. Identities and composition of morphisms are inherited from **C**. Remark. $Alg(\mathcal{M})$ is known as the Eilenberg-Moore category of \mathcal{M} . **Example.** Abusing notation, $Alg(\mathbb{L})$ is $Mon_{Unbiased}$, and $Alg(\mathbb{M})$ is $CommMon_{Unbiased}$. **Exercise 1.** Show that a monad morphism from \mathcal{M}_1 to \mathcal{M}_2 provides a functor from $\mathbf{Alg}(\mathcal{M}_2)$ to $\mathbf{Alg}(\mathcal{M}_1)$. **Definition** $(\langle \mathcal{C}, m, \mu, \bullet, \eta, \bullet \rangle$ -Premodule in a 2-Category C). A tuple $(\mathcal{L}, \ell, \lambda, \mathfrak{d}, \bullet)$ of the following form: Remark. A premodule is more commonly called a left module. *Remark.* An algebra for a CAT-monad is simply a premodule where \mathcal{L} is 1. **Theorem.** For every monad $\langle \mathcal{C}, \mathfrak{m}, \mu, \mathfrak{d}, \eta, \mathbf{i} \rangle$, the tuple $\langle \mathcal{C}, \mathfrak{m}, \mu, \mathfrak{d}, \mathbf{i} \rangle$ is a premodule of that monad. **Example.** Suppose we have a **CAT**-monad \mathcal{M} whose components are $\langle \mathbf{C}, M, \mu, \bullet, \eta, \bullet \rangle$. Let U be the functor from $\mathbf{Alg}(\mathcal{M})$ to \mathbf{C} that maps each algebra $\langle \mathcal{C}, a, \bullet, \bullet \rangle$ to \mathcal{C} and each algebra morphism $\langle f, \bullet \rangle$ to f. Let $\alpha : U : M \Rightarrow M$ be the natural transformation mapping each algebra $\langle \mathcal{C}, a, \bullet, \bullet \rangle$ to the morphism $a : M(U(\langle \mathcal{C}, a, \bullet, \bullet \rangle)) = M(\mathcal{C}) \to \mathcal{C}$. This forms a \mathcal{M} -premodule: α distributes and preserves identity because each operation a is associative and preserves identity. **Exercise 2.** Prove that for any **CAT**-monad \mathcal{M} and \mathcal{M} -premodule $\langle \mathbf{L}, L, \lambda, ., . \rangle$, there is a unique functor $L' : \mathbf{L} \to \mathbf{Alg}(\mathcal{M})$ such that L = L' : U and $\lambda = L' \cdot \alpha$. Remark. Given a 2-category \mathbb{C} , one can construct an opetory with the same 0-cells and 1-cells and with a 2-cell for each 2-cell from the composition of the inputs to the output. 1 is the opetory with one 0-cell \mathcal{C} , one 1-cell $m: \mathcal{C} \to \mathcal{C}$, and one 2-cell from $m^n \Rightarrow m$ for each $n: \mathbb{N}$. A monad \mathcal{M} in \mathbb{C} corresponds to a functor M of opetories from 1 to \mathbb{C} . Let $\mathbf{1}_{\ell}$ be the operatory with two 0-cells \mathcal{L} and \mathcal{C} , two 1-cells $\ell: \mathcal{L} \to \mathcal{C}$ and $m: \mathcal{C} \to \mathcal{C}$, and one 2-cell from ℓm^n to ℓ for each $n: \mathbb{N}$ and one 2-cell from $m^n \Rightarrow m$ for each $n: \mathbb{N}$. There is a unique functor of opetories from 1 to $\mathbf{1}_{\ell}$, which we will call I_{ℓ} . An \mathcal{M} -premodule \mathcal{L} , then, corresponds to a functor L of opetories from $\mathbf{1}_{\ell}$ to \mathbb{C} such that I_{ℓ} ; L equals M. **Exercise 3.** Show that a monad morphism from \mathcal{M}_1 to \mathcal{M}_2 provides a functor from $\mathbf{Alg}(\mathcal{M}_2)$ to $\mathbf{Alg}(\mathcal{M}_1)$. *Remark.* The monad morphism from the \mathbb{L} monad to the \mathbb{M} monad corresponds to the inclusion functor from **CommMon** to **Mon**.