
CS 6110 S23 Handout 2 Propositions as Types, Continued

1 A Digression on Heyting Algebra

As discussed in Lecture 28, there are fewer formulas that are considered intuitionistically valid than classically
valid. The law of double negation (¬¬φ→ φ), the law of excluded middle (φ∨¬φ), and proof by contradiction
or reductio ad absurdum are no longer accepted.

Boolean algebra is to classical logic as Heyting algebra is to intuitionistic logic. A Heyting algebra is an
algebraic structure of the same signature as Boolean algebra, but satisfying only those equations that are
provable intuitionistically. Whereas the free Boolean algebra on n generators has 22

n

elements, the free
Heyting algebra on one generator has infinitely many elements.

⊥

P¬P

⊤

The free BA on one generator.

...

⊤

⊥

P
¬P

¬¬PP ∨ ¬P

¬P ∨ ¬¬P¬¬P ⇒ P

The free HA on one generator.

An Bn

An+1 = An ∨BnBn+1 = Bn ⇒ An−1

The picture on the right is sometimes called the Rieger–Nishimura lattice.

2 Uninhabited Types

Since the proposition ⊥ is not provable, it follows that if it corresponds to a type 0, that type must be
uninhabited: there is no term with that type. Of course, ⊥ is not the only uninhabited type; for example,
the type ∀α.α also corresponds to logical falsity and is uninhabited as well.

Note that we can produce terms with these types if we have recursive functions, as in the following term
with type 0:

(rec f : int → 0.λx : int. f(x)) 42

However, the typing rule for recursive functions corresponds to a logic rule that makes the logic inconsistent:
it assumes what it wants to prove!

Γ, y : τ → τ ′, x : τ ⊢ e : τ ′

Γ ⊢ (rec y :τ → τ ′.λx :τ . e) : τ → τ ′
Γ, φ⇒ φ′, φ ⊢ φ′

Γ ⊢ φ⇒ φ′

Thus, we can think of 0 as the type of a term that does not actually return to its surrounding context.

1



3 Continuations and Negation

What is the significance of negation? We know that logically ¬φ is equivalent to φ ⇒ ⊥, which suggests
that we can think of ¬φ as corresponding to a function τ → 0. We have seen functions that accept a type
and do not return a value before: continuations have that behavior. If φ corresponds to τ , a reasonable
interpretation of ¬φ is as a continuation expecting a τ . Negation corresponds to turning outputs into inputs.

As we saw above with currying and uncurrying, meaning-preserving program transformations can have
interesting logical interpretations. What about conversion to continuation-passing style? We represent a
continuation k expecting a value of type τ as a function with type τ → 0.

We can then define CPS conversion as a type-preserving translation JΓ ⊢ e : τ K. Here we include the entire
type derivation Γ ⊢ e : τ inside the J·K because types are not unique and the translation depends on the
typing. The translation is type-preserving in the sense that a well-typed source term (Γ ⊢ e : τ) translates
to a well-typed target term:

GJΓK ⊢ JΓ ⊢ e : τ K : T Jτ K.

The translation of the typing context GJΓK simply translates all the contained variables:

GJx1 :τ1, . . . , xn :τnK = x1 :T Jτ1K, . . . , xn :T JτnK.

The soundness of the translation can be seen by induction on the typing derivation.

JΓ, x : τ ⊢ x : τ K = λk : T Jτ K → 0. k x

JΓ ⊢ (λx : τ . e) : τ → τ ′K = λk : T Jτ → τ ′K → 0. k (λk′ : T Jτ ′K → 0. λx : T Jτ K. JΓ, x : τ ⊢ e : τ ′Kk′)
JΓ ⊢ (e0 e1) : τ

′K = λk : T Jτ ′K → 0. JΓ ⊢ e0 : τ → τ ′K (λf : T Jτ → τ ′K. JΓ ⊢ e1 : τ K (λv : T Jτ K. f k v))

To make this type-check, we define the type translation T J·K as follows:

T JBK = B

T Jτ → τ ′K = (T Jτ ′K → 0) → (T Jτ K → 0)

Note that the logical interpretation of the translation of a function type corresponds to the use of the
contrapositive: (φ⇒ ψ) ⇒ (¬ψ ⇒ ¬φ).

By induction on the typing derivation, we can see that CPS conversion converts a source term of type τ into
a target term of type (T Jτ K → 0) → 0. Since programs correspond to proofs, CPS conversion shows how to
convert a proof of proposition φ into a proof of proposition ¬¬φ. In other words, CPS conversion proves the
admissibility in constructive logic of the rule for introducing double negation:

φ
¬¬φ

However, we are unable to invert CPS translation, and similarly we are unable (constructively) to remove
double negation.

4 Extracting Computational Content

Many automated deduction systems, such as NuPrl and Coq, are based on constructive logic. Automatic
programming was a significant research direction that motivated the development of these systems. The idea

2



was that a constructive proof of the existence of a function would automatically yield a program to compute
it: the statement asserting the existence of the function is a type, and a constructive proof yields a λ-term
inhabiting that type. For example, to obtain a program computing square roots, one merely has to give a
constructive proof of the statement ∀x ≥ 0 ∃y y2 = x.

5 Other Directions

If second-order constructive predicate logic corresponds to System F, do other logics correspond to new kinds
of programming language features? This has been an avenue of fruitful exploration over the last couple of
decades, with programming-language researchers deriving insights from classical logic, higher-order, and
linear logics that help guide the design of useful language features.

For example, linear logic is a logic that keeps track of resources. One may only use an assumption in the
application of a rule once; the assumption is consumed and may not be reused. This corresponds to functions
that consume their arguments, and hence is a possible model for systems with bounded resources.

3


	A Digression on Heyting Algebra
	Uninhabited Types
	Continuations and Negation
	Extracting Computational Content
	Other Directions

