
CS 6110 S23 Lecture 16 Hoare Logic

1 Axiomatic Semantics

So far we have focused on operational semantics, which are natural for modeling computation or talking
about how state changes from one step of the computation to the next. In operational semantics, there is a
well-defined notion of state. We take great pains to say exactly what a state is and how it is manipulated
by a program.

In axiomatic semantics, on the other hand, we do not so much care what the states actually are, but only
the properties that we can observe about them. This approach emphasizes the relationship between the
properties of the input (preconditions) and properties of the output (postconditions). This approach is
useful for specifying what a program is supposed to do and talk about a program’s correctness with respect
to that specification.

2 Preconditions and Postconditions

The preconditions and postconditions of a program say what is true before and after the program executes,
respectively. Often the correctness of the program is specified in these terms. Typically this is expressed
as a contract: as long as the caller guarantees that the initial state satisfies some set of preconditions, then
the program will guarantee that the final state will satisfy some desired set of postconditions. Axiomatic
semantics attempts to say exactly what preconditions are necessary for ensuring a given set of postconditions.

3 An Example

Consider the following program to compute xp:

y := 1;
q := 0;
while q < p {
y := y · x;
q := q + 1;

}

The desired postcondition we would like to ensure is y = xp; that is, the final value of the program variable
y is the pth power of x. We would also like to ensure that the program halts. One essential precondition
needed to ensure halting is p ≥ 0, because the program will only halt and compute xp correctly if that holds.
Note that p > 0 will also guarantee that the program halts and produces the correct output, but this is a
stronger condition (is satisfied by fewer states, has more logical consequences).

p > 0︸ ︷︷ ︸
stronger

⇒ p ≥ 0︸ ︷︷ ︸
weaker

The weaker precondition is better because it is less restrictive of the possible starting values of p that ensure
correctness. Typically, given a postcondition expressing a desired property of the output state, we would like
to know the weakest precondition that guarantees that the program halts and satisfies that postcondition
upon termination.

1

4 Partial vs Total Correctness

Two approaches to program verification are:

• Partial correctness: check if program is correct when it terminates. This is characterized by wlp and
the Hoare logic we will define shortly. The termination issue is handled separately.

• Total correctness: ensure both that the program terminates and that it is correct. This is characterized
by wp.

Partial correctness is the more common approach, since it separates the two issues of correctness and ter-
mination. These two verification tasks use very different methods, and it is helpful to separate them. Often
partial correctness is easier to establish, and once this is done, the correctness conditions can be used in
conjunction with a well-founded relation to establish termination.

5 Hoare Logic

Hoare logic is named for its inventor, Sir Charles Antony Richard Hoare (1934–), who also invented quicksort.
It is a logic for reasoning about the relationship between pre- and postconditions.

To define the syntax Hoare logic, we need to define the well-formed formulas. Hoare logic is built on top
of another conventional logic, such as first-order logic. For now, let us take first-order logic as our base
logic. Let φ,ψ, . . . denote first-order formulas. The formulas of Hoare logic are partial correctness assertions
(PCA’s), also known as Hoare triples. They look like

{φ}c{ψ}.

Informally, this means, “if φ holds before execution of c, and if c terminates, then ψ will hold upon termina-
tion.” This is equivalent to

φ ⇒ wlp c ψ.

5.1 Proof Rules

We will discuss the semantics of Hoare logic later. For now, we just give the deduction rules for the language
IMP with programs

c ::= skip | x := a | c0 ; c1 | if b then c1 else c2 | while b do c

The rules are

(skip) {φ}skip{φ}

(assignment) {φ{a/x}}x := a{φ}

(sequential composition)
{φ}c1 {ψ} {ψ}c2 {σ}

{φ}c1 ; c2 {σ}

(conditional)
{b ∧ φ}c1 {ψ} {¬b ∧ φ}c2 {ψ}

{φ} if b then c1 else c2{ψ}

2

(while)
{b ∧ φ}c{φ}

{φ}while b do c{φ ∧ ¬b}

(weakening)
φ⇒ φ′ {φ′}c{ψ′} ψ′ ⇒ ψ

{φ}c{ψ}
.

In the assignment rule, φ{a/x} denotes the safe substitution of the arithmetic expression a for the variable
x in φ. As with the λ-calculus, there may be bound variables in φ bound by quantifiers ∀ and ∃, and these
may have to be renamed to avoid capturing the free variables of a. In the weakening rule, the operator ⇒
is implication in the underlying logic. Note the parallels between these rules and the definitions of wlp.

6 Soundness and Completeness

A deduction system defines what it means for a formula to be provable, whereas a semantics defines what
it means for a formula to be true. Given a logic with a semantics and a deduction system, two desirable
properties are

• Soundness: Every provable formula is true.

• Completeness: Every true formula is provable.

Soundness is a basic requirement of any logical system. A logic would not be good for much if its theorems
were false! With respect to the small-step or big-step semantics of IMP, Hoare logic is sound.

Completeness, on the other hand, is a much more difficult issue. Hoare logic, as presented, is not complete in
general. However, it is relatively complete given an oracle for truth in the underlying logic, provided that logic
is expressive enough to express weakest preconditions. This is a famous result of Stephen Cook (1939–),
the discoverer NP-completeness. Although first-order logic is not expressive enough to express weakest
preconditions over arbitrary domains of computation, it is expressive enough over N or Z. Therefore Hoare
logic is relatively complete for IMP programs over the integers.

7 Semantics of IMP Revisited

Recall the big-step operational rules of IMP and their characterization in terms of binary relations on states
σ : Var → Z. The big-step rules are

⟨skip, σ⟩⇓cσ
⟨a, σ⟩⇓an

⟨x := a, σ⟩⇓cσ[n/x]

⟨c0, σ⟩⇓c τ ⟨c1, τ⟩⇓cρ

⟨c0 ; c1, σ⟩⇓cρ

⟨b, σ⟩⇓b true ⟨c1, σ⟩⇓c τ

⟨if b then c1 else c2, σ⟩⇓c τ

⟨b, σ⟩⇓b false ⟨c2, σ⟩⇓c τ

⟨if b then c1 else c2, σ⟩⇓c τ

⟨b, σ⟩⇓b false
⟨while b do c, σ⟩⇓cσ

⟨b, σ⟩⇓b true ⟨c, σ⟩⇓c τ ⟨while b do c, τ⟩⇓cρ

⟨while b do c, σ⟩⇓cρ

Let Env be the set of all states σ : Var → Z. For each program c, the big-step rules determine a binary
input/output relation on Env , namely

JcK ≜ {(σ, τ) | ⟨c, σ⟩⇓c τ} ⊆ Env × Env .

3

With this notation, we can express the big-step rules in terms of some basic operations on binary relations,
namely relational composition (;) and reflexive transitive closure (∗):

R ; S ≜ {(σ, ρ) | ∃τ (σ, τ) ∈ R, (τ, ρ) ∈ S}

R∗ ≜
⋃
n≥0

Rn = {(σ, τ) | ∃σ0, . . . , σn σ = σ0, τ = σn, and (σi, σi+1) ∈ R, 0 ≤ i ≤ n− 1},

where R0 ≜ {(σ, σ) | σ ∈ Env} and Rn+1 ≜ Rn ; R. The big-step rules are equivalent to the following:

JskipK = {(σ, σ) | σ ∈ Env} (skip)

Jx := aK = {(σ, σ[n/x]) | ⟨a, σ⟩⇓an} (assignment)

Jc0 ; c1K = Jc0K ; Jc1K (sequential composition)

Jif b then c1 else c2K = JbK ; Jc1K ∪ J¬bK ; Jc2K (conditional)

Jwhile b do cK = (JbK ; JcK)∗ ; J¬bK (while loop),

where in the conditional and while loop,

JbK ≜ {(σ, σ) | ⟨b, σ⟩⇓b true}
J¬bK ≜ {(σ, σ) | ⟨b, σ⟩⇓b false} = JskipK − JbK.

In fact, this would have been a much more compact way to define them originally.

7.1 Semantics of Weakest Liberal Preconditions and Partial Correctness Assertions

We can now give a formal semantics for weakest liberal preconditions and Hoare partial correctness assertions.
Let L denote the underlying logic (typically first-order logic). Write σ ⊨ φ if the formula φ of L is true
in state σ, and write ⊨ φ if φ is true in all states. We wish to define what it means for a weakest liberal
precondition assertion wlp c ψ to be true in a state σ, written σ ⊨ wlp c ψ, and for a partial correctness
assertion {φ}c{ψ} to be true, written ⊨ {φ}c{ψ}.

σ ⊨ wlp c ψ ⇔ ∀τ (σ, τ) ∈ JcK ⇒ τ ⊨ ψ

⊨ {φ}c{ψ} ⇔ ∀σ σ ⊨ φ ⇒ σ ⊨ wlp c ψ
⇔ ∀σ, τ σ ⊨ φ ∧ (σ, τ) ∈ JcK ⇒ τ ⊨ ψ.

7.2 Soundness and Relative Completeness of Hoare Logic

Let us write ⊢ {φ}c{ψ} to assert that {φ}c{ψ} is provable in Hoare logic. Then soundness and relative
completeness of Hoare logic are captured in the following theorems.

Theorem 16.1 (Soundness). ⊢ {φ}c{ψ} ⇒ ⊨ {φ}c{ψ}.

Theorem 16.2 (Relative Completeness). Assume that the underlying logic L is expressive in the sense that
all weakest liberal preconditions are expressible in L; that is, for each program c and formula ψ of L, there
is a formula ψ′ of L such that for all σ, σ ⊨ ψ′ iff σ ⊨ wlp c ψ. Then ⊨ {φ}c{ψ} ⇒ ⊢ {φ}c{ψ}, provided
we are allowed to assume all true formulas of L as axioms.

Proof sketch. The proof is by structural induction on c. We will just sketch the proof for two cases, assign-
ments and the while loop.

4

For an assignment x := a, suppose ⊨ {φ}x := a{ψ}. Then for all σ, if σ ⊨ φ, then σ ⊨ wlp (x := a) ψ.
But wlp (x := a) ψ = ψ{a/x}, so for all σ, if σ ⊨ φ, then σ ⊨ ψ{a/x}, therefore ⊨ φ ⇒ ψ{a/x}. We
can thus assume ⊢ φ ⇒ ψ{a/x}, since we are allowed to take true formulas of L as axioms. Then ⊢
{ψ{a/x}}x := a{ψ} by the assignment rule of Hoare logic, thus ⊢ {φ}x := a{ψ} by the weakening rule of
Hoare logic.

Now for the while loop. Suppose ⊨ {φ}while b do c{ψ}. Then for all σ, if σ ⊨ φ, then σ ⊨ wlp (while b do c) ψ.
Since L is expressive, wlp (while b do c) ψ is equivalent to a formula ρ of L, and ⊨ φ⇒ ρ. Since the programs

while b do c if b then (c ; while b do c) else skip

are semantically equivalent, we have

ρ ⇔ wlp (while b do c) ψ

⇔ wlp (if b then (c ; while b do c) else skip) ψ
⇔ (b ⇒ wlp c (wlp (while b do c) ψ)) ∧ (¬b ⇒ wlp skip ψ)
⇔ (b ⇒ wlp c ρ) ∧ (¬b ⇒ ψ),

thus ⊨ ρ ∧ ¬b ⇒ ψ and ⊨ ρ ∧ b ⇒ wlp c ρ. The latter says exactly that ⊨ {ρ ∧ b}c{ρ}. By the induction
hypothesis, ⊢ {ρ ∧ b}c{ρ}, and by the fact that we may assume all true formulas of L as axioms, ⊢ φ ⇒ ρ
and ⊢ ρ ∧ ¬b⇒ ψ. Therefore

⊢ {ρ ∧ b}c{ρ} ⇒ ⊢ {ρ}while b do c{ρ ∧ ¬b} by the Hoare while rule
⇒ ⊢ {φ}while b do c{ψ} by weakening.

5

	Axiomatic Semantics
	Preconditions and Postconditions
	An Example
	Partial vs Total Correctness
	Hoare Logic
	Proof Rules

	Soundness and Completeness
	Semantics of IMP Revisited
	Semantics of Weakest Liberal Preconditions and Partial Correctness Assertions
	Soundness and Relative Completeness of Hoare Logic

