
CS 6110 S23 Lecture 11 A Functional Language

Let us construct a functional language FL by augmenting the λ-calculus with some more conventional pro-
gramming constructs. This is a richer language than any we have seen, one that we might actually like to
program in. We will give semantics for this language in two ways: a structural operational semantics and a
translation to the CBV λ-calculus.

1 Syntax of FL

In addition to λ-abstractions, we introduce some new primitive constructs: tuples (e1, . . . , en), natural
number constants n, Boolean constants true and false, and a letrec construct for recursive functions. All
these constructs are primitive constructs of the language; that is, they are given as part of the basic syntax,
not encoded by other constructs. We could also include arithmetic and Boolean operators as before, but
let’s leave these out for now for simplicity of the exposition.

1.1 Expressions

Expressions are defined by the following BNF grammar:

e ::= λx1 . . . xn . e | e0e1 | x | n | true | false
| (e1, . . . , en) | #n e | if e0 then e1 else e2

| let x = e1 in e2 | letrec f1 = λx1 . e1 and . . . and fn = λxn . en in e

where n is strictly positive in projections #n e, λ-abstractions λx1 . . . xn . e, and the letrec construct.

Computation will be performed on closed terms only. We have said what we mean by closed in the case of λ-
terms, but there are also variable bindings in the let and letrec construct, and we need to extend the definition
to those cases by defining the scope of the bindings. The scope of the binding of x in let x = e1 in e2 is e2
(but not e1!), and the scope of fi in letrec f1 = λx1 . e1 and . . . and fn = λxn . en in e is the entire expression,
including e1, . . . , en and e.

1.2 Values

Values are a subclass of expressions for which no reduction rules will apply. Thus values are irreducible.
There will be other irreducible terms that are not values; these will be the stuck terms.

v ::= λx1 . . . xn . e | n | true | false | (v1, . . . , vn)

2 Operational Semantics

As before, we will specify our operational semantics structurally in terms of reductions and evaluation
contexts.

2.1 Evaluation Contexts

We define evaluation contexts so that evaluation is left-to-right and deterministic.

E ::= [·] | E e | v E | #nE | if E then e1 else e2

| let x = E in e | (v1, . . . , vm, E, em+2, . . . , en)

1

There are no holes on the right-hand side of if because we want e1 and e2 to be evaluated lazily. Even in an
eager, call-by-value language, we want some laziness.

The structural congruence rule takes the usual form:

e
1−→ e′

E[e]
1−→ E[e′]

2.2 Reductions

(λx1 . . . xn . e) v → (λx2 . . . xn . e){v/x1}, n ≥ 2

(λx. e) v → e{v/x}
#n (v1, . . . , vm) → vn, where 1 ≤ n ≤ m

if true then e1 else e2 → e1

if false then e1 else e2 → e2

let x = v in e → e{v/x}
letrec . . . → (to be continued)

We can already see that there will be problems with soundness. For example, what happens with the
expressions if 3 then 1 else 0 or #5 (true, false, true)? In these cases, the evaluation is stuck, because there is
no reduction rule that applies, but the expression is not a value. Unlike the λ-calculus, not all expressions
work in all contexts. We do not have an explicit notion of type in this language to rule out such expressions.
Typically in practice, stuck expressions constitute a runtime type error.

3 Translating FL to λ-CBV

3.1 Application and Abstraction, Numbers and Booleans

To capture the semantics of FL, we can also translate it to the call-by-value λ-calculus. The translation is
defined by structural induction on the syntax of the expression. For the basis of the induction,

JxK ≜ x JnK ≜ λfx. fnx JtrueK ≜ λxy. x id JfalseK ≜ λxy. y id

The compound constructs other than tuples, projections, and letrec are translated as follows:

Jλx1 . . . xn . eK ≜ λx1 . Jλx2 . . . xn . eK, n ≥ 2 Jλx. eK ≜ λx. JeK Je0e1K ≜ Je0K Je1K

Jif e0 then e1 else e2K ≜ Je0K (λd. Je1K) (λd. Je2K) Jlet x = e1 in e2K ≜ (λx. Je2K) Je1K

3.2 Tuples

Let us consider the translation of tuples. We have already seen how to represent lists in the λ-calculus using
the functions pair, head, tail, nil, and empty with the following properties:

head (pair e1 e2) = e1 tail (pair e1 e2) = e2 empty (pair e1 e2) = false empty nil = true.

Using these constructs, we can define the translation from tuples to λ-CBV as follows:

J()K ≜ nil J(e1, e2, . . . , en)K ≜ pair Je1K J(e2, . . . , en)K J#n eK ≜ head (Jn− 1K tail JeK).

The translation is not sound, because there are stuck FL expressions whose translations are not stuck; for
example, #1 ().

2

4 Recursive Functions

Recursion in FL is implemented with the letrec construct

letrec f1 = λx1 . e1 and . . . and fn = λxn . en in e.

This construct allows us to define mutually recursive functions, each of which is able to call itself and other
functions defined in the same letrec block. Note that all the variables fi are in scope in the entire expression;
thus any fi may occur in e and in any of the bodies ej of the functions being defined. The latter occurrences
represent recursive calls.

For the semantics of letrec, we will consider only the case n = 1 for simplicity of the presentation. The
operational semantics is given by the following reduction rule:

letrec f = λx. e1 in e → e{(λx. e1){letrec f = λx. e1 in f/f}/f}. (1)

Some explanation of this rule is in order. First, let us look at the two subexpressions

letrec f = λx. e1 in f (λx. e1){letrec f = λx. e1 in f/f} (2)

appearing on the right-hand side of the rule (1). Both expressions represent the recursive function being
defined, and the latter is a value. The former reduces to the latter under the rule (1):

letrec f = λx. e1 in f
1−→ f {(λx. e1){letrec f = λx. e1 in f/f}/f}
= (λx. e1){letrec f = λx. e1 in f/f}.

The substitution of letrec f = λx. e1 in f for free occurrences of f in λx. e1 is what makes the function
recursive. Later on in the computation, when this expression is again exposed and applied to a value v, we
will have

(letrec f = λx. e1 in f) v
1−→ ((λx. e1){letrec f = λx. e1 in f/f}) v
= (λx. (e1 {letrec f = λx. e1 in f/f})) v (assuming f ̸= x)
1−→ e1 {letrec f = λx. e1 in f/f}{v/x}.

If f = x, then f has no free occurrences in λx. e1, so the expressions (2) both reduce to λx. e1. In this case
the letrec construct is equivalent to the ordinary nonrecursive let.

For the translation to λ-CBV, recall from Lecture 5 that, using the Y -combinator, we can produce a fixpoint
Y (λf . λx. e) of λf . λx. e. We can think of Y (λf . λx. e) as a recursively-defined function f such that f = λx. e,
where the body e can refer to f . Then we define

Jletrec f = λx. e1 in eK ≜ (λf . JeK) (Y (λf . Jλx. e1K)).

We should not use the original Y combinator, but the more CBV-friendly combinator YCBV as defined in
Lecture 5.

3

	Syntax of FL
	Expressions
	Values

	Operational Semantics
	Evaluation Contexts
	Reductions

	Translating FL to -CBV
	Application and Abstraction, Numbers and Booleans
	Tuples

	Recursive Functions

