
CS 6110 S23 Lecture 10 Semantics via Translation

Our goal is to study programming language features using various semantic techniques. So far we have seen
small-step and big-step operational semantics. However, there are other ways to specify meaning, and they
can give useful insights that may not be apparent in the operational semantics.

A different way to give semantics is by defining a translation from the programming language to another
language that is better understood (and typically simpler). This is essentially a process of compilation, in
which a source language is converted to a target language. Later on we will see that the target language
can even be mathematical structures, in which case we refer to the semantics as a denotational semantics.
A third style of semantics is axiomatic semantics, which we will also discuss later in the course.

1 Translation

We map well-formed programs in the original language into items in a meaning space. These items may be

• programs in an another language (definitional translation);

• mathematical objects (denotational semantics); an example is taking λx : int. x to {(0, 0), (1, 1), . . .}.

Because they define the meaning of a program, these translations are also known as meaning functions or
semantic functions. We usually denote the semantic function under consideration by J·K. An object e in the
original language is mapped to an object JeK in the meaning space under the semantic function. We may
occasionally add other decorations to distinguish between different semantic functions, as for example JeKcbn
or CJeK.

2 Translating CBN λ-Calculus into CBV λ-Calculus

The call-by-name (lazy) λ-calculus was defined with the following reduction rule and evaluation contexts:

(λx. e1) e2
1−→ e1 {e2/x} E ::= [·] | E e.

The call-by-value (eager) λ-calculus was similarly defined with

(λx. e) v
1−→ e{v/x} E ::= [·] | E e | v E.

These are fine as operational semantics, but the CBN rules do not adequately capture why CBV is as
expressive as CBN. We can see this more clearly by constructing a translation from CBN to CBV. That
is, we treat the CBV calculus as the meaning space. This translation exposes some issues that need to be
addressed when implementing a lazy language.

To translate from the CBN λ-calculus to the CBV λ-calculus, the key issue is how to make function applica-
tion lazy in the arguments. CBV evaluation will eagerly evaluate all the argument expressions, so they need
to be protected from evaluation. This is accomplished by wrapping the argument in a dummy λ-abstraction
to delay its evaluation. Later, when the value of the argument is needed, the abstraction is applied to a
dummy argument id to extract the body. The wrapped argument is sometimes called a thunk.

Formally, we define the semantic function J·K by induction on the structure of the translated expression:

JxK ≜ x id Jλx. eK ≜ λx. JeK Je1 e2K ≜ Je1K (λd. Je2K), d /∈ FV(Je2K), (1)

1

where id = λz. z.

For an example, recall that we defined:

true ≜ λxy. x false ≜ λxy. y if ≜ λxyz. xyz.

The problem with this construction in the CBV λ-calculus is that if b e1 e2 evaluates both e1 and e2, regardless
of the truth value of b. The conversion above fixes this problem.

JtrueK = Jλxy. xK = λxy. JxK = λxy. x id
JfalseK = Jλxy. yK = λxy. JyK = λxy. y id

JifK = Jλxyz. xyzK = λxyz. J(xy)zK = λxyz. JxyK (λd. JzK)
= λxyz. JxK (λd. JyK) (λd. JzK)
= λxyz. (x id) (λd. y id) (λd. z id).

Now, translating if true e1 e2 and evaluating under the CBV rules,

Jif true e1 e2K = JifK (λd. JtrueK) (λd. Je1K) (λd. Je2K)
= (λxyz. (x id) (λd. y id) (λd. z id)) (λd. JtrueK) (λd. Je1K) (λd. Je2K)
3−→ ((λd. JtrueK) id) (λd. (λd. Je1K) id) (λd. (λd. Je2K) id)
1−→ JtrueK (λd. (λd. Je1K) id) (λd. (λd. Je2K) id)
= (λxy. x id) (λd. (λd. Je1K) id) (λd. (λd. Je2K) id)
2−→ ((λd. (λd. Je1K) id) id)
2−→ Je1K,

and e2 was never evaluated.

3 Adequacy

Both the CBV and CBN λ-calculus are deterministic reduction strategies in the sense that there is at most
one reduction that is enabled in any term. When an expression e in a language is evaluated in a deterministic
system, one of three things can happen:

1. There exists an infinite sequence of expressions e1, e2, . . . such that e
1−→ e1

1−→ e2
1−→ · · · . In this case,

we write e⇑ and say that e diverges.

2. The expression e produces a value v in zero or more steps. In this case we say that e converges to the
value v and write e⇓ v.

3. The computation converges to a non-value. When this happens, we say the computation is stuck.1

A semantic translation is adequate if these three behaviors in the source system are accurately reflected in
the target system, and vice versa. This relationship is illustrated in the following diagram:

e v

JeK JvK≈t

∗

J·K
∗

J·K

1This cannot happen with our CBN-to-CBV translation, but we will see some examples soon enough.

2

If e converges to a value v in the source language, then JeK must converge to some value t that is equivalent
(e.g. β-equivalent) to JvK in the target language, and vice-versa. This is formally stated as two properties,
soundness and completeness. For our CBN-to-CBV translation, these properties take the following form:

Soundness:

(i) JeK⇓cbv t ⇒ ∃v t ≈ JvK ∧ e⇓cbn v

(ii) JeK⇑cbv ⇒ e⇑cbn

Completeness:

(i) e⇓cbn v ⇒ ∃t t ≈ JvK ∧ JeK⇓cbv t

(ii) e⇑cbn ⇒ JeK⇑cbv

where ≈ is some notion of target term equivalence that is preserved by evaluation. Here we are using t to
represent target terms to distinguish them from source terms e.

Soundness says that the computation in the CBV domain starting from the image JeK of a CBN program
e accurately simulates the computation starting from e in the CBN domain. Thus if the target process
terminates in a value, then so does the source process from which it was translated, and the final values
must be related in the sense described formally above; and if the target computation diverges, then so would
the source process. Completeness says the opposite: every computation in the source domain CBN starting
from e is accurately simulated by the computation in the target domain CBV starting from JeK.

Adequacy is the combination of soundness and completeness.

4 Proving Adequacy

We would like to show that evaluation commutes with our translation J·K from CBN to CBV. To do this,
we first need a notion of target term equivalence (≈) that is preserved by evaluation. This is challenging,
because in the evaluation sequence in the target language, intermediate terms may be generated that are
not JeK for any source term e. For some translations (but not this one), the reverse may also happen. The
equivalence must allow for these extra β-redexes that appear during translation.

For our CBN-to-CBV translation, we can define an appropriate equivalence in terms of a reduction relation

(λd. t) id 1−−→
opt

t, where d ̸∈ FV(t) (2)

that can be applied in any context, including inside the body of a λ-abstraction. We might call this an
optimization step. Intuitively, an optimization step unwraps a thunk if it is already applied to the dummy
argument id. We write t1

∗−−→
opt

t2 if t2 can be obtained from t1 by applying zero or more optimization steps

(2). We define t1 ≈ t2 if t1 and t2 reduce to a common normal form via only optimization steps. Ordinarily,
to establish that ≈ is an equivalence relation, we would need to prove that ∗−−→

opt
is confluent. It is indeed

confluent, but we do not need to prove it here, because we will only need to use it in one direction. Also
note carefully that CBN and CBV themselves do not do optimization steps; this is just a device to define
our notion of equivalence.

Adequacy will follow from a series of lemmas, all of which are proved by induction in some form. Most of the
work is contained in Lemma 10.5. Let us write t1

k−−→
cbv

t2 if t1 reduces to t2 in k steps in the CBV reduction

order, t1
∗−−→

cbv
t2 if t1

k−−→
cbv

t2 for some k ≥ 0, and t1
+−−→
cbv

t2 if t1
k−−→

cbv
t2 for some k ≥ 1.

3

To show adequacy, we show that each CBN evaluation step starting from e is mirrored by a sequence of CBV
evaluation steps starting from JeK. To keep track of corresponding stages in the two evaluation sequences,
we define a simulation relation > between source and target terms that is more general than the translation
J·K and is preserved during evaluation of both source and target. Intuitively, e > t means that CBN term e
is simulated by the CBV term t.

Formally, > is defined by the following rules:

x > x id
e > t

λx. e > λx. t

e0 > t0 e1 > t1
e0 e1 > t0 (λd. t1)

e > t

e > (λd. t) id
(3)

where in the last two rules, the variable d does not occur freely in the body of the abstraction.

The first three rules of (3) ensure that a source term corresponds to its translation. The last rule is different;
it takes care of the extra β-reductions that may arise during evaluation. Because the right-hand side of the >
relation becomes structurally smaller in this rule’s premise, the definition of the relation is still well-founded.
The first three rules are well-founded based on the structure of e; the last is well-founded based on the
structure of t. If we were proving a more complex translation correct, we would need more rules like the last
rule for other meaning-preserving target-language reductions.

First, let us warm up by showing that a term corresponds to its translation.

Lemma 10.1. e > JeK.

Proof. By structural induction on e.

• Case x: x > x id by definition.

• Case λx. e′: We have JeK = λx. Je′K. By the induction hypothesis, e′ > Je′K, so λx. e′ > λx. Je′K by
the second rule of (3).

• Case e0 e1: We have JeK = Je0K (λd. Je1K). By the induction hypothesis, e0 > Je0K and e1 > Je1K, so
e0 e1 > Je0K (λd. Je1K) by the third rule of (3).

Next, let us show that if e is simulated by t, its translation is ≈-equivalent to t in a very strong sense.

Lemma 10.2. If e > t, then t
∗−−→

opt
JeK. (In particular, t ≈ JeK.)

Proof. Induction on the derivation of e > t.

• Case x > x id:
We have x id 0−−→

opt
x id = JxK.

• Case λx. e′ > λx. t′ where e′ > t′:
By the induction hypothesis, t′ ∗−−→

opt
Je′K, therefore λx. t′

∗−−→
opt

λx. Je′K = Jλx. e′K, as 1−−→
opt

reductions in

the body of λ-abstractions are permitted.

• Case e0 e1 > t0 (λd. t1) where e0 > t0 and e1 > t1:
By the induction hypothesis, t0

∗−−→
opt

Je0K and t1
∗−−→

opt
Je1K, thus t0 (λd. t1)

∗−−→
opt

Je0K(λd. Je1K) = Je0 e1K.

• Case e > (λd. t) id where e > t:
By the induction hypothesis, t ∗−−→

opt
JeK. But then (λd. t) id 1−−→

opt
t

∗−−→
opt

JeK.

4

The next lemma says that if a value λx. e corresponds to a term t, then we can always reduce t to a value
λx. t′ while preserving the correspondence with λx. e.

Lemma 10.3. If λx. e > t, then there exists t′ such that t ∗−−→
cbv

λx. t′ and e > t′ (thus also λx. e > λx. t′).

Proof. By induction on the derivation of λx. e > t.

• Case y > y id: Impossible, as y ̸= λx. e.

• Case e0 e1 > t0 (λd. t1): Impossible, as e0 e1 ̸= λx. e.

• Case λx. e > λx. t′ where e > t′:
Immediate, as the right-hand side is already reduced.

• Case e0 > (λd. t0) id, where e0 > t0:
In this case e0 = λx. e and t = (λd. t0) id. By the induction hypothesis, there exists t′ such that e > t′

and t = (λd. t0) id 1−−→
cbv

t0
∗−−→

cbv
λx. t′.

The next lemma deals with substitution.

Lemma 10.4. If e1 > t1 and e2 > t2, then e1 {e2/x} > t1 {λd. t2/x}.

Proof. We proceed by induction on the derivation of e1 > t1.

• Case x > x id:
By the fourth rule of (3) with premise e2 > t2,

x{e2/x} = e2 > (λd. t2) id = (x id){λd. t2/x}.

• Cases y > y id where y ̸= x and λx. e > λx. t:
These cases are trivial, as the substitutions have no effect.

• Case λy. e > λy. t where e > t, x ̸= y:
By α-converting if necessary, we can assume without loss of generality that y ̸∈ FV(e2)∪FV(t2). Since
e > t, by the induction hypothesis we have e{e2/x} > t{λd. t2/x}. Using this as the premise in the
second rule of (3), we have

(λy. e){e2/x} = λy. (e{e2/x}) > λy. (t{λd. t2/x}) = (λy. t){λd. t2/x}.

• Case e e′ > t (λd′ . t′), where e > t and e′ > t′:
By the induction hypothesis, e{e2/x} > t{λd. t2/x} and e′ {e2/x} > t′{λd. t2/x}. By the third rule of
(3),

(e e′){e2/x} = (e{e2/x}) (e′{e2/x})
> (t{λd. t2/x}) (λd′ . (t′ {λd. t2/x}))
= (t{λd. t2/x}) ((λd′ . t′){λd. t2/x})
= (t (λd′ . t′)){λd. t2/x}.

• Case e1 > (λd′ . t′) id, where e1 > t′:
By the induction hypothesis, e1{e2/x} > t′{λd. t2/x}. By the fourth rule of (3),

e1{e2/x} >= (λd′ . (t′{λd. t2/x})) id = ((λd′ . t′) id){λd. t2/x}.

5

The following lemma shows that the relation > is preserved under evaluation of the source and target.

Lemma 10.5. If e > t and e
1−−→

cbn
e′, then there exists t′ such that t +−−→

cbv
t′ and e′ > t′.

e e′

t t′

1

cbn

>
+

cbv

>

Proof. We proceed by induction on the derivation of e > t.

• Case x > x id: This is vacuously true, as there is no evaluation step possible from x.

• Case λx. e > λx. t: As λx. e is a value, this is also vacuously true.

• Case e0 e1 > t0 (λd. t1), where e0 > t0 and e1 > t1:
There are two subcases, depending on the form of the derivation of e 1−−→

cbn
e′.

– Subcase e0 e1
1−−→

cbn
e′0 e1, where e0

1−−→
cbn

e′0:

By the induction hypothesis, there exists t′0 such that e′0 > t′0 and t0
+−−→
cbv

t′0. Then t0 (λd. t1)
+−−→
cbv

t′0 (λd. t1), and by the third rule of (3), e′0 e1 > t′0 (λd. t1).

– Subcase (λx. e′) e1
1−−→

cbn
e′{e1/x}:

In this case, λx. e′ > t0 and e1 > t1.
By Lemma 10.3, there exists t′ such that t0

∗−−→
cbv

λx. t′ and e′ > t′. We thus have t0 (λd. t1)
∗−−→

cbv

(λx. t′) (λd. t1)
1−−→

cbv
t′ {λd. t1/x}, and by Lemma 10.4, e′ {e1/x} > t′{λd. t1/x}.

• Case e0 > (λd. t0) id, where e0 > t0:
By the induction hypothesis, there exists t′0 such that e0 > t′0 and t0

∗−−→
cbv

t′0. Then (λd. t0) id 1−−→
cbv

t0
∗−−→

cbv
t′0.

We are now ready to prove the adequacy of the translation.

Theorem 10.6. The CBN-to-CBV translation (1) is sound and complete.

Proof. First completeness. Given a source term e and its translation JeK, from Lemma 10.1 we have that
e > JeK. From Lemma 10.5, we have that each step of the CBN evaluation of e is mirrored by a CBV
execution on the target side that preserves e > t. Thus if the evaluation of e diverges, so will the evaluation
of JeK. On the other hand, if the evaluation of e converges to a value v, then by Lemma 10.3, the evaluation
of JeK will converge to a value t such that v > t. By Lemma 10.2, JvK ≈ t. This establishes completeness.

For soundness, we need to show that every evaluation in the target language corresponds to some evaluation
in the source language. Suppose we have a target-language evaluation JeK → t to a value t. There are three
possibilities for the evaluation of e. First, the evaluation could get stuck. This cannot happen for this source
language, because all terms are either values or have a legal evaluation step. Second, e could evaluate to a
value v. But then v > t by Lemma 10.5, because the target-language evaluation is deterministic. Third, the
evaluation of e might diverge. But then Lemma 10.5 says there is a divergent target-language evaluation.
The determinism of the target language ensures that this cannot happen.

6

	Translation
	Translating CBN -Calculus into CBV -Calculus
	Adequacy
	Proving Adequacy

