
CS 6110 S22 Supplementary Lecture B Strong Typing 16 March 2022

1 Strong Typing

The translation of FL to λ-CBV presented in Lecture ?? is not sound, because there are many stuck terms
in FL that translate to terms of λ-CBV that are not stuck. For example, consider the stuck FL expression
if 3 then 1 else 0. It is stuck because there is no rule of the small-step semantics of FL that applies. However,
its image Jif 3 then 1 else 0K is not stuck—it reduces to a value under the CBV rules. In fact, there is no
way for a closed term to get stuck in the CBV or CBN λ-calculus. However, this value does not correspond
to the stuck non-value if 3 then 1 else 0 in the FL language. It is meaningless gibberish.

All reasonably powerful languages confront this problem in one way or another, but there is more than one
approach to dealing with it. A language in which no term can get stuck during evaluation is said to be
strongly typed. There is no way to apply an operation to a value of the wrong type. Note that strong typing
and static typing are not the same thing. For example, the language C is statically typed (the compiler
figures out types for all expressions), but it is possible to write code that gets stuck, such as the following:

int a[4]; a[4] = 2;

What this code does depends on what machine it is compiled on and what compiler options are used. For
example, it might result in the variable x holding the value 2, or perhaps some other variable or even the
return address register containing that value. The program may compute the wrong results, crash, or do
something completely unpredictable, such as jumping to memory address 2 and executing code.

In C, when an expression is evaluated whose results are not defined by the semantics, either the outcome is
“implementation-defined” or else the program is an incorrect C program. Experience has shown that this is
not necessarily a good idea, especially when it comes to building secure systems. One might assert that a
good programmer would never write such code, but that is of little consolation if the system is successfully
attacked by a buffer overrun that exploits implementation-defined behavior to jump to code controlled by
the attacker.

Some statically typed languages are strongly typed. Examples include Java and the various ML languages.
And some languages that are not statically typed are strongly typed, such as Scheme. And finally, some
languages, such as Forth and assembly code, are neither strongly nor statically typed.

Even in languages like OCaml that are statically typed, there are terms that are stuck unless we define some
kind of runtime type checking. For example, the expression 0/0 causes a runtime error. Runtime checking
is needed to provide well-defined behavior in these cases.

1.1 Runtime Type Checking

As defined, FL is not explicitly a strongly typed language. We can solve this problem by extending the
operational semantics with rules that reduce all stuck expressions to a special error value error. The new
term error represents a runtime error. This term cannot occur in a well-formed program, but may arise
during evaluation whenever an otherwise stuck expression occurs.

We implement runtime type checking for FL by building a translation from FL to itself. The effect will
be that when this new translation is layered on top of the translation above, the resulting target λ-CBV
program will faithfully and soundly represent evaluation of the original FL program. And the work done

1



in the translated code arguably does a better job of showing what happens in such a language than the
operational semantics does.

To build a sound translation, we will need a representation of the error value. More generally, we will need
to be able to tell what kind of value we have when an operation is to be applied, so we can catch values of
the wrong type. The idea is to tag each value with an integer representing its type. We could use 0 to tag
the error value, 1 to tag null, etc. The actual values do not matter, as long as they are distinct. Let us give
them symbolic names:

Err , 0 Null , 1 Bool , 2 Num , 3 Tuple , 4 Fun , 5

We use tags to check that we are getting the right kind of values where they are expected. For example, we
could check that we have a Boolean value for the test in a conditional if-then-else construct by testing that
the value’s tag is 2.

Let us call the new translation EJeK, where the E stands for “error”. Define translations of the various
constructor forms as follows, tagging values appropriately:

EJtK , (Bool, t), t ∈ {true, false} EJ()K , (Null, nil)

EJnK , (Num, n), n ∈ N EJ(e1, . . . , en)K , (Tuple, n, (EJe1K, . . . , EJenK)), n ≥ 1

EJerrorK , (Err, error) EJλx1, . . . , xn . eK , (Fun, λx1, . . . , xn . EJeK)

Each value is paired with a tag denoting its runtime type. In addition, tuples are tagged with their length
so that when a projection #n is applied, it can be checked that n is no larger than the length of the tuple.
The translation of other terms needs to check tags. For example, we can translate a conditional as follows,
checking the value of the test to make sure it is a Boolean:

EJif e0 then e1 else e2K , let z = EJe0K in

if #1 z = Bool

then if #2 z then EJe1K else EJe2K
else EJerrorK

where z 6∈ FV(e1) ∪ FV(e2).

If we had arithmetic operators, we could do the same thing for arithmetic:

EJe1 + e2K , let z1 = EJe1K in

let z2 = EJe2K in

if #1 z1 = Num

then if #1 z2 = Num

then (#2 z1) + (#2 z2)

else EJerrorK
else EJerrorK

where z1 6∈ FV(e2).

The rule for function application checks that the entity being applied as a function is actually a function:

EJe0 e1K , let z = EJe0K in

if #1 z = Fun then #2 z EJe1K else EJerrorK

where z 6∈ FV(e1).

2



Of course, we will need more translation rules for the various other constructs. The rule for projection checks
that it is in bounds:

EJ#n eK , let z = EJeK in

if #1 z = Tuple

then if n ≤ #2 z

then #n (#3 z)

else EJerrorK
else EJerrorK

We do not need to check that #2 z is a number, because that is true whenever the first component is Tuple,
as guaranteed by the translation. Likewise, we do not need to check n ≥ 1 because that is guaranteed by
the syntax of FL.

2 Summary

We have made FL strongly typed using runtime type checking. However, this does not really solve the problem
of unexpected values arising at runtime; it merely converts unpredictable behavior into a predictable error
value.

We can further improve the situation by introducing an exception mechanism that allows a program to catch
error conditions and handle them in some graceful way. In general, however, it is difficult for programs to
handle errors effectively, even with an exception mechanism.

Another approach is to use static (compile-time) reasoning supported by a type system that rules out certain
stuck expressions. This reduces the cost associated with runtime type checking and ensures that certain errors
cannot occur. However, type systems can never be expressive enough to rule out all unexpected expressions,
because it is impossible in general to predict the values of expressions at compile time. We will have more
to say about type systems later in the course.

3


	Strong Typing
	Runtime Type Checking

	Summary

