
CS 6110 S22 Lecture 6 Well-Founded Induction 11 February 2022

Perhaps the single most important proof technique in the theory of programming languages is mathmatical
induction. In this lecture we will take a very general look at the subject and identify necessary and sufficient
conditions under which the induction principle is valid. We will define induction on a well-founded relation,
illustrate the definition with several examples, and then take another look at our inference rules in this light.

1 Free Variables Revisited

Recall that some of the substitution rules mentioned the set of free variables FV(e) that occur in the
expression e.

(λy. e0){e1/x} = λy. (e0 {e1/x}), where y 6= x and y /∈ FV(e1),

(λy. e0){e1/x} = λz. (e0{z/y}{e1/x}), where z 6= x, z /∈ FV(e0), and z /∈ FV(e1).

Let us examine the definition of the free-variable function FV : {λ-terms} → Var.

FV(x) = {x} FV(e1 e2) = FV(e1) ∪ FV(e2) FV(λx. e) = FV(e)− {x}.

Why does this definition uniquely determine the function FV? There are two issues here:

• existence: whether FV is defined on all λ-terms;

• uniqueness: whether the definition is unique.

Of relevance is the fact that there are three clauses in the definition of FV corresponding to the three clauses
in the definition of λ-terms and that a λ-term can be formed in one and only one way by one of these three
clauses. Note also that although the symbol FV occurs on the right-hand side in two of these three clauses,
they are applied to proper (proper = strictly smaller) subterms.

The idea underlying this definition is called structural induction. This is an instance of a general induction
principle called induction on a well-founded relation.

2 Well-Founded Relations

A binary relation ≺ is said to be well-founded if it has no infinite descending chains. An infinite descending
chain is an infinite sequence of elements a0, a1, a2, . . . such that ai+1 ≺ ai for all i ≥ 0. Note that a
well-founded relation cannot be reflexive.

Here are some examples of well-founded relations:

• the successor relation {(m,m+ 1) | m ∈ N} on N;

• the less-than relation < on N;

• the element-of relation ∈ on sets. The axiom of foundation (or axiom of regularity) of Zermelo–Fraenkel
(ZF) set theory implies that ∈ is well-founded. Among other things, this prevents a set from being a
member of itself;

• the proper subset relation ⊂ on the set of finite subsets of N.

1

The following are not well-founded relations:

• the predecessor relation {(m+ 1,m) | m ∈ N} on N (0, 1, 2, . . . is an infinite descending chain!);

• the greater-than relation > on N;

• the less-than relation < on Z (0,−1,−2, . . . is an infinite descending chain);

• the less-than relation < on the real interval [0, 1] (1, 12 ,
1
3 ,

1
4 , . . . is an infinite descending chain);

• the proper subset relation ⊂ on subsets of N (N,N−{0},N−{0, 1}, . . . is an infinite descending chain).

3 Well-Founded Induction

Let ≺ be a well-founded binary relation on a set A. Abstractly, a property is just a map P : A → 2, or
equivalently, a subset P ⊆ A (the set of all a ∈ A for which P (a) = true).

The principle of well-founded induction on the relation ≺ says that in order to prove that a property P holds
for all elements of A, it suffices to prove that P holds of any a ∈ A whenever P holds for all b ≺ a. In other
words,

∀a ∈ A (∀b ∈ A b ≺ a⇒ P (b))⇒ P (a) ⇒ ∀a ∈ A P (a). (1)

Expressed as a proof rule,
∀a ∈ A (∀b ∈ A b ≺ a⇒ P (b))⇒ P (a)

∀a ∈ A P (a)
. (2)

The basis of the induction is when a has no ≺-predecessors; in that case, the premise ∀b ∈ A b ≺ a⇒ P (b)
is vacuously true.

For the well-founded relation {(m,m+1) | m ∈ N}, (1) and (2) reduce to the familiar notion of mathematical
induction on N: to prove ∀n P (n), it suffices to prove that P (0) and that P (n+ 1) whenever P (n).

For the well-founded relation < on N, (1) and (2) reduce to strong induction on N: to prove ∀n P (n), it
suffices to prove that P (n) whenever P (0), P (1), . . . , P (n − 1). When n = 0, the induction hypothesis is
vacuously true.

3.1 Equivalence of Well-Foundedness and the Validity of Induction

In fact, one can show that the induction principle (1)–(2) is valid for a binary relation ≺ on A if and only if
≺ is well-founded.

To show that well-foundedness implies the validity of the induction principle, suppose for a contradiction
that the induction principle were not valid. Then there would exist a property P for which the premise of
(2) holds but not the conclusion. Thus P (a0) would false for some element a0 ∈ A. The premise of (2) is
equivalent to

∀a ∈ A ¬P (a)⇒ ∃b ∈ A b ≺ a ∧ ¬P (b);

this implies that there exists a1 ≺ a0 such that P (a1) is false. But since P (a1) is false, for the same reason
there exists a2 ≺ a1 such that P (a2) is false. Continuing in this fashion, using the axiom of dependent choice
(a weak form of the axiom of choice), one can construct an infinite descending chain a0, a1, a2, . . . for which
P (ai) is false for all i ≥ 0, so ≺ is not well-founded.

Conversely, suppose that there exists an infinite descending chain a0, a1, a2, Then the property P (a)
that says “a /∈ {a0, a1, a2, . . .}” violates (2), since the premise of (2) holds but not the conclusion.

2

4 Structural Induction

Now let us define a well-founded relation on the set of all λ-terms. Define e < e′ if e is a proper subterm of
e′. A λ-term e is a proper (or strict) subterm of e′ if it is a subterm of e′ and if e 6= e′. If we think of λ-terms
as finite labeled trees, then e′ is a tree that has e as a subtree. Since these trees are finite, the relation is
well-founded. Induction on this relation is called structural induction.

We can now show that FV(e) exists and is uniquely defined for any λ-term e. In the grammar for λ-terms,
for any e, exactly one case in the definition of FV applies to e, and all references in the definition of FV are
to subterms, which are strictly smaller. The function FV exists and is uniquely defined for the base case of
the smallest λ-terms x ∈ Var. So FV(e) exists and is uniquely defined for any λ-term e by induction on the
well-founded subexpression relation.

We often have a set of expressions in a language built from a set of constructors starting from a set of
generators. For example, in the case of λ-terms, the generators are the variables x ∈ Var and the construc-
tors are the binary application operator · and the unary abstraction operators λx. The set of expressions
defined by the generators and constructors is the smallest set containing the generators and closed under
the constructors.

If a function is defined on expressions in such a way that

• there is one clause in the definition for every generator or constructor pattern,

• the right-hand sides refer to the value of the function only on proper subexpressions,

then the function is well-defined and unique.

5 Inference Rules

We defined small-step semantics using inference rules. These rules are another kind of inductive definition.
To prove properties of them, we would like to use well-founded induction.

To do this, we can change our view and look at reduction as a binary relation. To say that e 1−→ e′ according
to the small-step rules just means that the pair (e, e′) is a member of some reduction relation, which is a
subset of Exp× Exp. In fact, not only is it a relation, it is a partial function.

For example, one of the small-step rules for call-by-value λ-calculus is

(λx. e) v
1−→ e{v/x}

e1
1−→ e′1

e1 e2
1−→ e′1 e2

e
1−→ e′

v e
1−→ v e′

(3)

Here e1, e2, e′1 aremetavariables. Expressions appearing above the line are called premises, and the expression
below the line is called the conclusion. Sometimes one also sees an expression in parentheses to the right of
the rule; this is called a side condition and represents a restriction on when the rule can be applied.1

A rule instance is a substitution for all the metavariables that satisfies the side condition. For example, here
1Side conditions and premises should not be confused. The difference is that side conditions are not part of the relation that

the rule is trying to define, whereas the premises are.

3

is an instance of the rule (3):
(λx. x)(λz. z)

1−→ (λz. z)

((λx. x)(λz. z))Ω
1−→ (λz. z)Ω

With rules like (3), we are usually trying to define some set or relation by induction. For example, the rule
(3) is part of the inductive definition of the reduction relation 1−→, which is a subset of Exp×Exp. Such rules
are typically of the form

X1 X2 . . . Xn (ϕ)
X

, (4)

where X1, . . . , Xn specify elements that are already members of the set or relation being defined and X
represents a new element constructed from X1, . . . , Xn that is to be added to the relation. The side condition
ϕ, which may or may not be present, is a condition on X1, . . . , Xn and X that must hold for the rule to be
applicable.

Now suppose we have written down a set of rules in an attempt to define a set or relation A. How do we
know whether A is well-defined? If the rule (4) is in force, then surely we would like to have X ∈ A whenever
X1, . . . , Xn ∈ A and the side condition, if any, holds; but there may be many sets A for which this is true,
so this is hardly a definition.

6 Set Operators

To see how the definition works, we can view inference rules as monotone set operators. Suppose we have a
rule R of the form (4). Thus the X and the Xj in (4) represent members of some set S. We can view R as
a mapping on subsets of S. Given B ⊆ S, define

R(B) , {X | {X1, X2, . . . , Xn} ⊆ B and
X1 X2 . . . Xn

X
is an instance of (4)}.

Then R is a function mapping subsets of S to subsets of S; that is, R : 2S → 2S , where 2S denotes the
powerset (set of all subsets) of S.

Now suppose we have a finite set of such rules R1, . . . , Rm. What set A ⊆ S is defined by the rules? At the
very least, we would like A to satisfy the following two properties:

• A is R-closed : R1(A) ∪ · · · ∪ Rm(A) ⊆ A. We would like this to hold because we would like every
element that the rules say should be included in A are actually included in A.

• A is R-consistent : A ⊆ R1(A) ∪ · · · ∪Rm(A). We would like this to hold because we would like every
element of A to be included in A only as a result of applying one of the rules.

These two properties together say that A = R1(A)∪· · ·∪Rn(A), or in other words, A should be a fixed point
of the set map λA.R1(A) ∪ · · · ∪Rn(A). This leads to two natural questions:

• Does this map actually have a fixed point?

• Is the fixed point unique? If not, which one should we take?

We will answer these questions next time.

4

	Free Variables Revisited
	Well-Founded Relations
	Well-Founded Induction
	Equivalence of Well-Foundedness and the Validity of Induction

	Structural Induction
	Inference Rules
	Set Operators

