
CS 6110 S22 Lecture 3 λ-Calculus Encodings January 31 2021

Even though the pure λ-calculus consists only of λ-terms, we can represent and manipulate common data
objects like integers, Boolean values, lists, and trees. All these things can be encoded as λ-terms.

1 Encoding Common Datatypes

1.1 Booleans

The Booleans are the easiest to encode, so let us start with them. We would like to define λ-terms to
represent the Boolean constants true and false and the usual Boolean operators ⇒ (if-then), ∧ (and), ∨ (or),
and ¬ (not) so that they behave in the expected way. There are many reasonable encodings. One good one
is to define true and false by:

true , λxy. x false , λxy. y.

Now we would like to define a conditional test if. We would like if to take three arguments b, t, f , where b is
a Boolean value (either true or false) and t, f are arbitrary λ-terms. The function should return t if b = true
and f if b = false.

if = λbtf .

{
t, if b = true,

f, if b = false.

Now the reason for defining true and false the way we did becomes clear. Since true t f
1−→ t and false t f

1−→ f ,
all if has to do is apply its Boolean argument to the other two arguments:

if , λbtf . btf

The other Boolean operators can be defined from if:

and , λb1b2 . if b1 b2 false or , λb1b2 . if b1 true b2 not , λb1 . if b1 false true

Whereas these operators work correctly when given Boolean values as we have defined them, all bets are off
if they are applied to any other λ-term. There is no guarantee of any kind of reasonable behavior. Basically,
with the untyped λ-calculus, it is garbage in, garbage out.

1.2 Natural Numbers

We can encode natural numbers N using Church numerals. This is the same encoding that Alonzo Church
used, although there are other reasonable encodings. The Church numeral for the number n ∈ N is denoted

1



n. It is the λ-term λfx. fn x, where fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n

denotes the n-fold composition of f with itself:

0 , λfx. x

1 , λfx. fx

2 , λfx. f(fx)

3 , λfx. f(f(fx))

...

n , λfx. f(f(. . . (f︸ ︷︷ ︸
n

x) . . .)) = λfx. fnx

We can define the successor function inc as

inc , λnfx. f(nfx).

That is, inc on input n returns a function that takes a function f as input, applies n to it to get the n-fold
composition of f with itself, then composes that with one more f to get the (n + 1)-fold composition of f
with itself. Then

incn = (λnfx. f(nfx))n

1−→ λfx. f(nfx)

1−→ λfx. f(fnx)

= λfx. fn+1x

= n+ 1.

We can perform basic arithmetic with Church numerals. For addition, we might define

add , λmnfx.mf(nfx).

On input m and n, this function returns

(λmnfx.mf(nfx))mn
1−→ λfx.mf(nfx)

1−→ λfx. fm(fnx)

= λfx. fm+nx

= m+ n.

Here we are composing fm with fn to get fm+n.

Alternatively, recall that Church numerals act on a function to apply that function repeatedly, and addition
can be viewed as repeated application of the successor function, so we could define

add , λmn.m inc n.

Similarly, multiplication is just iterated addition, and exponentiation is iterated multiplication:

mul , λmn.m(addn) 0 exp , λmn.m(muln) 1.

Other useful arithmetic operations and tests are easily encoded and are left as exercises.

2



1.3 Pairing and Projections

Logic and arithmetic are good places to start, but we still are lacking any useful data structures. For example,
consider ordered pairs. It would be nice to have a pairing function pair with projections first and second that
obeyed the following equational specifications:

first (pair e1 e2) = e1 second (pair e1 e2) = e2 pair (first p) (second p) = p,

provided p is a pair. We can take a hint from if. Recall that if selects one of its two branch options
depending on its Boolean argument. We can have pair do something similar, wrapping its two arguments for
later extraction by some function f :

pair , λabf . fab.

Thus pair e1 e2 → λf . fe1e2. To get e1 back out, we can just apply this to true: (λf . fe1e2) true →
true e1 e2 → e1, and similarly applying it to false extracts e2. Thus we can define

first , λp. p true second , λp. p false.

Again, if p is not a term of the form pair a b, expect the unexpected.

1.4 Lists

One can define lists [x1 ; . . . ; xn] and λ-terms corresponding to the OCaml list operators List.cons (::),
List.hd, and List.tl. We leave these constructions as exercises.

1.5 Local Variables

One feature that seems to be missing is the ability to declare local variables. For example, in OCaml, we
can introduce a new local variable with the let expression:

let x = e1 in e2

and the scope of x is e2. Intuitively, we expect this expression to evaluate e1 to some value v and then to
replace occurrences of x inside e2 with v. In other words, it should evaluate to e2 {v/x}. But there is a
λ-term that behaves the same way:

(λx. e2) e1 → (λx. e2) v
1−→ e2 {v/x}.

We can thus view the let expression let x = e1 in e2 as syntactic sugar for (λx. e2) e1.

References

[1] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North-Holland, 2nd edition, 1984.

3


	Encoding Common Datatypes
	Booleans
	Natural Numbers
	Pairing and Projections
	Lists
	Local Variables


