
CS 6110 S18 Lecture 18 Denotational Semantics

1 What is Denotational Semantics?

So far we have looked at

• operational semantics involving rules for state transitions,

• definitional semantics involving translations from a source language to a target language, where the
target language is simpler or better understood, and

• axiomatic semantics involving logical rules for deriving relations between preconditions and postcon-
ditions.

Another approach, known as denotational semantics, involves translations to mathematical objects. The
objects in question are generally functions or relations with well-defined extensional meaning in terms of
sets. The main challenge is getting a precise understanding of the sets over which these function and
relations operate.

2 Diagonalization

For example, consider the λ-term λx.x. This clearly represents the identity function that takes the input
object x to itself. But what is its domain? A more interesting example is the function λx. xx. Let’s say that
the domain of this function is D. Then x represents some element of D, since x is an input to the function.
But in the body, x is applied to x, so x must also represent some function D → E. For this to make sense,
it must be possible to interpret every element of D as an element of the function space D → E. Thus there
must be a function f : D → (D → E) taking x ∈ D to the function f(x) : D → E that it represents.

It is conceivable that f could actually be a bijection between D and the function space D → E. However,
this is impossible if E contains more than one element. In fact, f cannot even be onto. This follows by a
diagonalization argument.1 Let e0, e1 ∈ E, e0 ̸= e1. For any function f : D → (D → E), we can define
d : D → E by d = λx. if f x x = e0 then e1 else e0. Then for all x, d x ̸= f x x, so d ̸= f x for any x.

This type of argument is called diagonalization because for countable sets D, the function d is constructed
by arranging the values f x y for x, y ∈ D in a countable matrix and going down the diagonal, creating a
function that is different from every f x on at least one input (namely x).

0 1 2
f0 f0 0 f0 1 f0 2 . . .
f1 f1 0 f1 1 f1 2 . . .
f2 f2 0 f2 1 f2 2 . . .
...

...

Thus for any function f : D → (D → E), where E contains more than one element, there always exists a
function d : D → E that is not f x for any x ∈ D. This says that the cardinality (size) of the set of functions
D → E is strictly larger than the cardinality of D, no matter what the sets D and E are, as long as E
contains at least two elements.

1Due to Georg Cantor (1845–1918), the inventor of set theory.

1

3 Denotational Semantics of IMP

When defining denotational semantics, we will use the notation λx ∈ D. e to indicate that the domain of the
function is the set D. This will ensure that we are precise in identifying the extension of functions.

This is not really a type declaration. Later, we will introduce types and write them as λx : τ . e. The
distinction is that types are pieces of language syntax, whereas sets are semantic objects.

The syntax of IMP was

a ::= n | x | a0 + a1 | . . .

b ::= true | false | ¬b | b0 ∧ b1 | a0 = a1 | . . .

c ::= skip | x := a | c0 ; c1 | if b then c1 else c2 | while b do c

The syntactic categories of a, b, c are arithmetic expressions AExp, Boolean expressions BExp, and commands
Com, respectively.

Our denotational semantics will be defined in terms of states, which are functions Env = Var → Z. Our
semantics will interpret arithmetic expressions as functions from states to integers, Boolean expressions as
functions from states to Boolean values 2 = {true, false}, and commands as partial functions from states to
states.

AJaK ∈ Env → Z BJbK ∈ Env → 2 CJcK ∈ Env ⇀ Env

(The notation → denotes total functions, those that produce a value on all inputs in the domain; and ⇀
denotes partial functions, those that may not produce a value on all inputs in the domain.) Given an initial
state as input, the partial function CJcK produces the final state reached by applying the command if the
program c halts; however, there will be no such final state if c does not halt (e.g., while true do skip). Thus
the function is partial.

Now we can define the denotational semantics of expressions by structural induction. This induction is a
little more complicated since we are defining all three functions at once. However, it is still well-founded
because we only use the function value on subexpressions in the definitions. For arithmetic expressions,

AJnKσ ≜ n AJxKσ ≜ σ(x) AJa1 + a2 Kσ ≜ AJa1 Kσ +AJa2 Kσ
BJtrueKσ ≜ true BJfalseKσ ≜ false BJ¬bKσ ≜

{
true, if BJbKσ = false,

false, if BJbKσ = true.

Note that by a slight but convenient abuse, we are overloading the metasymbol + in the definition of
AJa1 + a2 K. The + on the left-hand side represents a syntactic object, namely a symbol in the language
IMP, whereas the + on the right-hand side represents a semantic object, namely the addition operation in
the integers. We can also streamline the definition of BJ¬bK using a semantic if-then-else:

BJ¬bKσ ≜ if BJbKσ then false else true.

For a command c, given an initial state as input, the function CJcK should produce the final state reached
by applying c, provided the computation halts. However, there will be no such final state if c does not halt;
for example, while true do skip. This is why the function is partial. However, we can make it a total function
by including a special element ⊥ (called bottom) denoting nontermination. For any set S, let S⊥ ≜ S ∪{⊥}.
Then we can regard CJcK as a total function CJcK ∈ Env → Env⊥, where CJcKσ = τ if c terminates in state
τ on input state σ, and CJcKσ = ⊥ if c does not terminate on input state σ.

2

Using this notation, we can define

CJskipKσ ≜ σ

CJx := aKσ ≜ σ[AJaKσ/x]
CJif b then c1 else c2 Kσ ≜

{
CJc1 Kσ, if BJbKσ = true,

CJc2 Kσ, if BJbKσ = false

= if BJbKσ then CJc1 Kσ else CJc2 Kσ
CJc1 ; c2 Kσ ≜

{
CJc2 K (CJc1 Kσ) , if CJc1 Kσ ̸= ⊥,

⊥, if CJc1 Kσ = ⊥
= if CJc1 Kσ = ⊥ then ⊥ else CJc2 K (CJc1 Kσ) .

For the last case involving sequential composition c1 ; c2, another way of achieving this effect is by defining
a lifting operator (·)† : (D → E⊥) → (D⊥ → E⊥) on functions:

f† ≜ λx.if x = ⊥ then ⊥ else f(x).

With this notation, we have

CJc1 ; c2 Kσ ≜ CJc2 K† (CJc1 Kσ)
or equivalently,

CJc1 ; c2 K ≜ CJc2 K† ◦ CJc1 K,
where ◦ denotes functional composition (f ◦ g)(σ) ≜ f(g(σ)).

We have one command left: while b do c. This is equivalent to if b then (c ; while b do c) else skip, so a first
guess at a definition might be:

CJwhile b do cKσ ≜ if BJbKσ then CJc ; while b do cKσ else σ (1)

= if BJbKσ then CJwhile b do cK†(CJcKσ) else σ,

but this is circular. However, we can take a fixed point in some domain. Replacing CJwhile b do cK by W ,
we obtain a fixed-point equation

W σ = if BJbKσ then W †(CJcKσ) else σ,

or rather

W = λσ ∈ Env . if BJbKσ then W †(CJcKσ) else σ, (2)

and we would like CJwhile b do cK to be a solution of this equation. Let us define

F ≜ λw ∈ Env → Env⊥ . λσ ∈ Env . if BJbKσ then w†(CJcKσ) else σ.

Then we would like W = F W ; that is, we are looking for a fixed point of F . But how do we take fixed
points without using the dreaded Y combinator? Eventually we will have a function fix with W = fixF ,
where F ∈ (Env → Env⊥) → (Env → Env⊥). The solution will be to think of a while statement as the limit
of a sequence of approximations. Intuitively, by running through the loop more and more times, we will get
better and better approximations.

The first and least accurate approximation is the totally undefined function

W0 ≜ λσ ∈ Env .⊥.

3

The next approximation is

W1 ≜ F W0

= λσ ∈ Env . if BJbKσ then W †
0 (CJcKσ) else σ

= λσ ∈ Env . if BJbKσ then ⊥ else σ.

This simulates one iteration of the loop. We could then simulate two iterations by:

W2 ≜ F W1 = λσ ∈ Env . if BJbKσ then W †
1 (CJcKσ) else σ.

In general,

Wn+1 ≜ F Wn = λσ ∈ Env . if BJbKσ then W †
n(CJcKσ) else σ.

Then denotation of the while statement should be the limit of this sequence. But how do we take limits in
spaces of functions? To do this, we need some structure on the space of functions. We will define an ordering
⊑ on these functions such that W0 ⊑ W1 ⊑ W2 ⊑ · · · , then find the least upper bound of this sequence.
This will be the least solution of the equation (2).

In order to show that the least fixed point of F exists, we will apply the Knaster–Tarski theorem. However,
we only proved the Knaster–Tarski theorem for the partial order of subsets of some universal set ordered by
set inclusion ⊆. We need to extend it to the more general case of chain-complete partial orders (CPOs). To
apply this theorem, we must know that the function space Env → Env⊥ is a CPO and that F is a continuous
map on this space.

4 Binary Relation Semantics

An alternative but equivalent approach to the denotational semantics of IMP is to interpret commands as
binary relations, or sets of ordered pairs:

JcK ⊆ Env × Env .

Every partial and total function is extensionally just a binary relation: a total function is a binary relation
containing exactly one pair with first component σ for each σ in the domain, and a partial function is a
binary relation containing at most one pair with first component σ for each σ in the domain.

In this view, an equivalent definition to the above would be

JskipK ≜ {(σ, σ) | σ ∈ Env}Jx := aK ≜ {(σ, σ[AJaKσ/x]) | σ ∈ Env}Jif b then c1 else c2 K ≜ (Jc1 K ∩ {(σ, τ) | BJbKσ = true}) ∪ (Jc2 K ∩ {(σ, τ) | BJbKσ = false}) (3)Jc1 ; c2 K ≜ Jc2 K ◦ Jc1 K,
where ◦ denotes relational composition R ◦ S ≜ {(σ, τ) | ∃ρ (σ, ρ) ∈ S ∧ (ρ, τ) ∈ R}. The definition of the
conditional (3) can be further simplified by defining a binary relation

JbK ≜ {(σ, σ) | BJbKσ = true}

for Boolean expressions b; then (3) becomes

Jif b then c1 else c2 K = (Jc1 K ◦ JbK) ∪ (Jc2 K ◦ J¬bK). (4)

In this way the binary relation semantics of the conditional is defined in terms of the simpler set-theoretic
operations ∪ and ◦ on relations.

4

For the while loop, we can take the least fixed point of a continuous map on binary relations. We can use
the set-theoretic version of the Knaster–Tarski theorem for this. Using (4) to rewrite (1) in terms of binary
relations, we obtain

W = (W ◦ JcK ◦ JbK) ∪ J¬bK.
One can show that the ⊆-least solution of this equation is

W = J¬bK ◦ (JcK◦JbK)∗,
where R∗ denotes the reflexive-transitive closure of the relation R:

R0 = {(σ, σ) | σ ∈ Env} Rn+1 = R ◦Rn R∗ =
∪
n

Rn,

so we can define

Jwhile b do cK ≜ J¬bK ◦ (JcK◦JbK)∗.
One can show

Theorem 1. For all σ, τ ∈ Env, the following are equivalent:

(i) ⟨c, σ⟩ ⇓c τ in the big-step semantics of Lecture 6;

(ii) CJcKσ = τ in the denotational semantics of §3;

(iii) (σ, τ) ∈ JcK in the binary relation semantics of this section.

5

