
CS 6110 S18 Lecture 15 Exceptions and First-Class Continuations

1 Exceptions

An exception mechanism allows non-local transfer of control in exceptional situations. It is typically used to
handle abnormal, unexpected, or rarely occurring events. It can simplify code by allowing programmers to
factor out these uncommon cases. OCaml also uses them for not-found conditions when searching lists and
similar data structures, a questionable design decision; Standard ML uses option for this purpose.

To add an exception handling mechanism to FL, we first extend the syntax:

e ::= . . . | raise s e | try e1 handle (s x) e2

Informally, the idea is that handle provides a handler e2 to be invoked when the exception named s is
encountered inside the expression e1. To raise an exception, the program calls raise s e, where s is the name
of an exception and e is an expression that will be passed to the handler as its argument x.

Most languages use a dynamic scoping mechanism to find the handler for a given exception. When an
exception is encountered, the language walks up the runtime call stack until a suitable exception handler is
found.

1.1 Exceptions in FL

To add support for exceptions to our CPS translation, we add a handler environment h, which maps ex-
ception names to continuations. We also extend our lookup and update functions to accommodate handler
environments. Applied to a handler environment, lookup returns the continuation bound to a given exception
name, and update rebinds an exception name to a new continuation.

Now we can add support for exceptions to our translation:

EJraise s eKρkh ≜ EJeKρ(lookup h “s”)h

EJtry e1 handle (s x) e2 Kρkh ≜ EJe1 Kρk (update h (λv. EJe2 K(update ρ v “x”)kh) “s”)

EJλx. eKρkh ≜ k (tag-fun (λvk′h′ . EJeK(update ρ v “x”)k′h′))

= k (tag-fun (λv. EJeK(update ρ v “x”)))

EJe0 e1 Kρkh ≜ EJe0 Kρ(check-fun (λf . EJe1 Kρ(λv. fvkh)h))h
where tag-fun tags a function value with its runtime type.

There are some subtle design decisions captured by this translation. For example, note that in try. . . handle,
x is in scope in e2, but s is not. Thus if e2 attempts to raise exception s in try e1 handle (s x) e2, in this
translation e2 will not be invoked again. That is, e2 cannot be invoked recursively.

1.2 Exceptions with Resumption

The exception mechanism above has the property that raising an exception terminates execution of the
evaluation context. Most modern programming languages have exceptions with this termination semantics.
A different approach to exceptions is to allow execution to continue at the point where the exception was
raised, after the exception handler gets a chance to repair the damage. This approach is known as exceptions
with resumption semantics. In practice it seems to be difficult to use these mechanisms usefully. The

1

Cedar/Mesa system supported both kinds of exceptions and found that resumption-style exceptions were
almost never used, and often resulted in bugs when they were.

Operating system interrupts are one place where resumption semantics can be seen. When a process receives
an interrupt, the interrupt handler is run, and then execution continues at the point in the program where
the interrupt happened.

We can give a translation that captures the semantics of resumption-style exceptions. We add two constructs
to FL:

e ::= interrupt s e | try e1 handle (s x) e2

The translation makes the exception-handling environment h a mapping from exception names to functions
rather than to continuations:

Jinterrupt s eKρkh = JeKρ(λv. (lookup h “s”) v k)hJtry e1 handle (s x) e2 Kρkh = Je1 Kρk (update h (λvk′ . Je2 Kρk′h) “s”)
This translation shows that with resumption semantics, the exception handler is really a dynamically bound
function that is invoked at the point where the exception happens.

2 First-Class Continuations

Some languages expose continuations as first-class values. Examples of such languages include Scheme and
SML/NJ. In the latter, there is a module that defines a continuation type α cont representing a continuation
expecting a value of type α. There are two functions for manipulating continuations:

• callcc : (α cont → α) → α (callcc f) passes the current continuation to the function f

• throw : α cont → α → β (throw k v) sends the value v to the continuation k.

The call (callcc f) passes the current continuation corresponding to the evaluation context of the callcc itself
to the function f of type α cont → α. The current continuation k is of type α cont. When called with this
continuation, f may evaluate to a value of type α, and that is the value of the expression (callcc f) that
called it. However, the continuation k passed to f may be called with a value v of type α by (throw k v) with
the same effect. It is up to the evaluation context of the callcc to determine which. Thus (callcc λk. 3) and
(callcc λk. throw k 3) have the same effect.

2.1 Semantics of First-Class Continuations

Using the translation approach we introduced earlier, we can easily describe these mechanisms. Suppose we
represent a continuation value for the continuation k by tagging it with the integer 7. Then we can translate
callcc and throw as follows:

Jcallcc eKρk = JeKρ(check-fun (λf . f (7, k) k))Jthrow e1 e2 Kρk = Je1 Kρ(check-cont (λk′ . Je2 Kρk′))
The key to the added power is the non-linear use of k in the callcc rule. This allows k to be reused any
number of times.

2

2.2 Implementing Threads with Continuations

Once we have first-class continuations, we can use them to implement all the different control structures we
might want. We can even use them to implement (non-preemptive) threads, as in the following code that
explains how concurrency is handled in languages like OCaml and Concurrent ML:

type thread = unit cont

let ready : thread queue = new_queue (* a mutable FIFO queue *)

let enqueue t = insert ready t

let dispatch() = throw (dequeue ready) ()

let spawn (f : unit -> unit) : unit =

callcc (fun k -> (enqueue k; f(); dispatch()))

let yield() : unit = callcc (fun k -> enqueue k; dispatch())

The interface to threads consists of the functions spawn and yield. The spawn function expects a function f
containing the work to be done in the newly spawned thread. The yield function causes the current thread
to relinquish control to the next thread on the ready queue. Control also transfers to a new thread when
one thread finishes evaluating. To complete the implementation of this thread package, we just need a queue
implementation. CML has preemptive threads, in which threads implicitly yield automatically after a certain
amount of time; this requires just a little help from the operating system.

3

