Lecture 33

Topics

1. PS4 – there will be one more problem assigned on Monday. Recall that the main point of Problem 1 is to show why the LCF fixed point induction principle needs an *admissibility* condition. This condition is similar to Winskel’s requirement of an inclusive predicate in his account. You can basically use any cpo D to illustrate the issue. I first suggest \(\mathbb{N} \).

2. Finishing the rules for First-Order Logic (FOL) in the style of programming logic. This style is essentially “block structured natural deduction”. It has been extensively studied in logic. The other styles are *Hilbert style*, just axioms and simple inference rules (used in Kleene), and the *sequent calculus* or *refinement logic*, as used in Coq and Nuprl respectively.

3. Close examination of the program and proof of Gauss’s formula, \(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \).

4. Introduction to the Loop language, Meyer and Ritchie 1967 technical report from IBM research.

Introduction to the Loop Language, Meyer and Ritchie 1967

Why are Loop programs interesting?

- An upper bound on the *run time* is determined by program structure in a simple way.
- They are a *natural sublanguage* of all standard procedural languages.
- They compute precisely the primitive recursive functions.
- One of the simplest rich *subrecursive languages*, so they can give insight into the Blum size theorem.

Syntax – register names \(X_1, X_2, ..., X_n, ... \)

Syntax – instructions

1. \(X = Y \)
2. \(X = X + 1 \)
3. \(X = 0 \)
4. **LOOP** \(X \ **P END**, where \(P \) is a loop program.
Definition: A Loop program P is any sequence of basic instructions (1 to 3) or a loop instruction of type 4 where P is a Loop program.

The semantics of LOOP X P END is the same as the PL1 program, (see PLCV p.85),

\[\text{do } I = X \text{ to 1 by -1 } \]
\[P \]
\[\text{end.} \]

If the program P terminates, which it will, it is executed exactly X times $P(X), P(X - 1), P(X - 2), \ldots, P(1)$.

For example LOOP ($X = X + 1$) END computes $2 \cdot X$ in $2 \cdot X + 2$ steps.

Sometimes we write $X := X + 1$, $X := 0$ for the assignments so that $X = 0$ etc., can be read as assertions.

<table>
<thead>
<tr>
<th>Program</th>
<th>State (with assertions about X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X := 0$</td>
<td>$X = 0$</td>
</tr>
<tr>
<td>$X := X + 1$</td>
<td>$X = 1$</td>
</tr>
<tr>
<td>$X := X + 1$</td>
<td>$X = 2$</td>
</tr>
<tr>
<td>LOOP X</td>
<td></td>
</tr>
<tr>
<td>$X := 1$</td>
<td>$X = 4$</td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Reading: Please read Meyer & Ritchie pages 1-6 and 12-13.

Properties of Loop programs

Definition of L_n

L_0 no loops
L_n loops nested to depth n.

Definition 2.1. Loop $= \bigcup_{n=0}^{\infty} L_n$, page 2.

Definition 3.1. Iterating $g \quad h(z, y) = g(y)(z)$

Definition 3.2. Bounding functions f_n

\[f_0(0) = 1 \quad f_0(1) = 2 \quad f_0(x) = x + 2 \text{ for } x > 1. \]
\[f_{n+1}(x) = f_n(x)(1) \]

Bounding Theorem 3.3. If $P \in L_n$, then we can find $p > 0$ such that $f_n^{(p)}$ bounds the running time of P.

2