Lecture 23

Topics

1. If you can attend Voevodsky’s lecture at 4:30 pm in Malott 406 it will be relevant to discussion in Friday’s lecture.

2. To reason about partial functions we need a new equality relation, \(t_1 \simeq t_2 \), and a new induction principle, fixed point induction. We first discuss the fixed points of recursive functionals.

3. We will study Kleene’s Recursion Theorem as a basis for the induction.

4. We will study a generalization of Kleene’s theorem in a classical setting.

Kleene Equality \(\varphi(x) \simeq \psi(x) \) – converge or diverge together and if they converge, then they converge to the same value.

Functionals and fixed points

Consider the recursive function on \(\mathbb{N} \):
\[
f(x, y) = \text{if } x = y \text{ then } y + 1 \text{ else } f(x, f(x-1, y + 1)).
\]

Write this in terms of the functional \(F \):
\[
F(f) = \lambda x. \lambda y. \text{if } x = y \text{ then } y + 1 \text{ else } f(x, f(x-1, y + 1)).
\]

Let
\[
\begin{align*}
 f_1(x, y) &= \text{if } x = y \text{ then } y + 1 \text{ else } x + 1 \\
 f_2(x, y) &= \text{if } x \geq y \text{ then } x + 1 \text{ else } y - 1 \\
 f_3(x, y) &= \text{if } x \geq y \& \text{even}(x - y) \text{ then } x + 1 \text{ else } \bot (\text{where } \bot \text{ is the diverging element})
\end{align*}
\]

Notice that for \(i = 1, 2, 3 \)
\[
F(f_i)(x, y) \simeq \text{if } x = y \text{ then } y + 1 \text{ else } f_i(x, f_i(x-1, y + 1))
\]
Notice that \(f_3 \) is a fixed point of \(F \), i.e.
\[
F(f_3) \simeq f_3
\]
\[
F(f_3) = \lambda x, y. \text{if } x = y \text{ then } y + 1 \text{ else } f_3(x, f_3(x - 1, y + 1))
\]
\[
= \lambda x, y. \text{if } x = y \text{ then } y + 1 \text{ else if } x \geq y \text{ and even}(x - y) \text{ then } x + 1 \text{ else } \bot
\]
\[
= \text{if } x = y \text{ then even}(x - y)
\]
\[
\text{hence } x + 1 \text{ (same value as } f_3)\]
\[
\text{if } x \neq y \text{ then }
\]
\[
\text{so if even}(x - y) \text{ then } x + 1 \text{ (same value as } f_3)
\]
\[
\text{if } x < y \text{ then } \bot \text{ (same value as } f_3)\]

But also notice:
\[
F(f_1) \simeq f_1 \text{ since}
\]
\[
F(f_1) = \lambda x, y. \text{if } x = y \text{ then } y + 1
\]
\[
\text{so if } x = y \text{ this is the same value as } f_1
\]
\[
\text{if } x \neq y \text{ then } f_1(x, f_1(x - 1, y + 1)) \text{ and } f_1(x, \ldots) \text{ is } x + 1, \text{ this is the same value as } f_1
\]

Notice \(f_3(x, y) \sqsubseteq f_1(x, y) \).

Kleene’s Recursion Theorem For all recursive functionals \(F(\varphi) \simeq \varphi' \) there is a partial recursive function \(\varphi \) such that \(F(\varphi) \simeq \varphi \), and for all \(\varphi' \) such that \(F(\varphi') \simeq \varphi' \), \(\varphi \sqsubseteq \varphi' \).

Proof sketch:

Let \(\varphi_0 = \) the totally undefined partial function on \(\mathbb{N} \). Define the sequence \(\varphi_{i+1} \simeq F(\varphi_i) \), note \(\varphi_i \sqsubseteq \varphi_j, i < j \).

Define \(\varphi_\omega \) as the limit of this sequence. \(\varphi_\omega(x) \) is defined if there is an \(i \) such that \(\varphi_i(x) \downarrow \). To compute \(\varphi_\omega(x) \) we compute the sequence \(\varphi_1(x), \varphi_2(x), \ldots, \varphi_n(x) \) and give a value if one of the \(\varphi_j(x) \) is defined.

We need to establish two claims:

(a) \(F(\varphi_\omega)(x) \simeq \varphi_\omega(x) \) for all \(x \)

(b) If \(F(\varphi)(x) \simeq \varphi(x) \) for all \(x \), then \(\varphi_\omega(x) \sqsubseteq \varphi(x) \)

Why are these intuitively true?

(a) \(F(\varphi_\omega)(x) \simeq \varphi_\omega(x) \) because if \(F(\varphi_\omega)(x) = k \) for some number \(k \) then at some least \(i, F(\varphi_i(x)) = k \). \(F(\varphi_\omega)(x) \) will give the same value because it accesses the same data.

(b) If \(F(\varphi)(x) \simeq \varphi(x) \), then \(\varphi_\omega(x) = \varphi(x) \) because \(\varphi_0 \sqsubseteq \varphi, \varphi_1 \sqsubseteq \varphi, \ldots, \varphi_i \sqsubseteq \varphi \), and this sequence has the least amount of data needed to compute the fixed point.