1 Soundness from the operational perspective

We have seen that we can write useful typing rules, but how do we know we got them right? This depends on what the type system is supposed to accomplish. The traditional application is making sure that programs don't have run-time type errors (or, at least, helping the programmer avoid them). A type system is sound if well-typed programs do not incur run-time type errors; that is, they do not get stuck when evaluated according to the operational semantics:

$$
\text { Typing rules are sound } \Longleftrightarrow \text { no well-formed program gets stuck. }
$$

Note that we use well-formed and well-typed equivalently for this language. To be more precise,

$$
\vdash e: \tau \wedge e \longrightarrow^{*} e^{\prime} \Longrightarrow e^{\prime} \in \text { Value } \vee \exists e^{\prime \prime} . e^{\prime} \longrightarrow e^{\prime \prime}
$$

Even with the fanciest type systems, we can't avoid difficult reasoning about some kinds of errors. For example, in OCaml, we can still get nonexhaustive matches and numeric overflows.

2 Soundness of the simply-typed lambda calculus

We will show soundness of $\lambda \rightarrow$ in two steps, using the following two lemmas:

- Preservation: As we evaluate a program, its type is preserved at each step. This property is sometimes also called subject reduction, for historical reasons.

$$
\vdash e: \tau \wedge e \longrightarrow e^{\prime} \Longrightarrow \vdash e^{\prime}: \tau
$$

- Progress: Every program is either a value or can be stepped into another program (and using Preservation, this will be of the same type):

$$
\vdash e: \tau \Longrightarrow e=v \in \text { Value } \vee \exists e^{\prime \prime} . e \longrightarrow e^{\prime \prime}
$$

Note that with these two lemmas soundness easily follows. Preservation says every step preserves the type, so we use induction on the number of steps taken in $e \longrightarrow^{*} e^{\prime}$ to show that e^{\prime} must have the same type as e. Then Progress can be applied to e^{\prime} to show that evaluation isn't stuck there. We will now set out to prove these two lemmas.

2.1 Proof of Preservation

Assuming $e: \tau \wedge e \longrightarrow e^{\prime}$ we need to show that $\vdash e^{\prime}: \tau$. We do this by well-founded induction on typing derivations. (Note that the typing derivations are finite and therefore the relation of subderivation is well-founded.) The property we are trying to show on typing derivations is:

$$
P(\vdash e: \tau) \Longleftrightarrow \forall e^{\prime} . e \longrightarrow e^{\prime} \Longrightarrow \vdash e^{\prime}: \tau
$$

Given that we know $e \longrightarrow e^{\prime}$, there are three possibilities corresponding to the three evaluation rules:

$$
\frac{e_{0} \longrightarrow e_{0}^{\prime}}{e_{0} e_{1} \longrightarrow e_{0}^{\prime} e_{1}}(L) \quad \frac{e_{1} \longrightarrow e_{1}^{\prime}}{v_{0} e_{1} \longrightarrow v_{0} e_{1}^{\prime}}(R) \quad \xrightarrow[(\lambda x: \tau . e) v \longrightarrow e\{v / x\}]{ }(\beta)
$$

- Case (L): $e=e_{0} e_{1}$.

Because we have a typing derivation for $e_{0} e_{1}$, we know that there are typing derivations for e_{0} too. We must have $\vdash e_{0}: \tau_{1} \rightarrow \tau$ and $\vdash e_{1}: \tau_{1}$ for some type τ_{1}. Because the typing derivation for e_{0} is a subderivation of the typing derivation, by the induction hypothesis the step $e_{0} \longrightarrow e_{0}^{\prime}$ also preserves type. So we know $\vdash e_{0}^{\prime}: \tau_{1} \rightarrow \tau$, and we now have both of the premises necessary to construct the proof that $e_{0}^{\prime} e_{1}$ has the desired type τ.

- Case (R): $e=v_{0} e_{1}$

This case is symmetrical to case (L); in this case e_{1} is the subexpression making the step.

- Case 3: $e=\left(\lambda x: \tau_{1} . e_{0}^{\prime}\right) v_{1}$

The typing derivation of $\vdash e: \tau$ must look like this:

$$
\frac{x: \tau_{1} \vdash e_{0}^{\prime}: \tau}{\vdash\left(\lambda x: \tau_{1} \cdot e_{0}^{\prime}\right): \tau_{1} \rightarrow \tau} \vdash v_{1}: \tau_{1}, ~ \vdash\left(\lambda x: \tau_{1} \cdot e_{0}^{\prime}\right) v_{1}: \tau
$$

We know that $e \longrightarrow e_{0}^{\prime}\left\{v_{1} / x\right\}$, so we need to show that $e_{0}\left\{v_{1} / x\right\}: \tau$ using the facts $x: \tau_{1} \vdash e_{0}^{\prime}: \tau$ and $\vdash v_{1}: \tau_{1}$. Our induction hypothesis doesn’t help us here; we need to prove this separately. It follows as a special case of a substitution lemma that captures the type preservation of β-reduction:
2.2 Substitution Iemma

$$
\Gamma, x: \tau^{\prime} \vdash e: \tau \wedge \vdash v: \tau^{\prime} \Longrightarrow \Gamma \vdash e\{v / x\}: \tau
$$

We prove this by induction on the typing derivation of e.

- Case 1: $e=b$. In this case the result is trivial.
- Case 2: a variable
- Case 2a: $e=x$. Then $e\{v / x\}=v$ and $\tau^{\prime}=\tau$. We have $\vdash v: \tau$ and need $\Gamma \vdash v: \tau$. This holds because adding new things to the typing context doesn't cause us to lose the ability to produce a typing derivation. This property can be expressed in the following weakening lemma whose proof we leave as an exercise:

$$
\Gamma \vdash e: \tau \wedge x \notin F V(e) \Longrightarrow \Gamma, x: \tau^{\prime} \vdash e: \tau
$$

Then we can get from $\emptyset \vdash v: \tau$ to $\Gamma \vdash v: \tau$ by applying the weakening lemma enough times to add in the finite number of bindings in Γ.

- Case 2b: $e=y \neq x$. In this case $e\{v / x\}=e$ and therefore the result trivially holds.
- Case 3: $e=e_{0} e_{1}$. Using the definition of substitution, $e\{v / x\}=e_{0}\{v / x\} e_{1}\{v / x\}$.

Using the derivation of $\Gamma, x: \tau^{\prime} \vdash e: \tau$ we have $\Gamma, x: \tau^{\prime} \vdash e_{0}: \tau_{1} \rightarrow \tau$ and $\Gamma, x: \tau^{\prime} \vdash e_{1}: \tau_{1}$:

$$
\frac{\Gamma, x: \tau^{\prime} \vdash e_{0}: \tau_{1} \rightarrow \tau \quad \Gamma, x: \tau^{\prime} \vdash e_{1}: \tau_{1}}{\Gamma, x: \tau^{\prime} \vdash e: \tau}
$$

Therefore we can use the induction hypothesis to obtain $\Gamma \vdash e_{0}\{v / x\}: \tau_{1} \rightarrow \tau$ and $\Gamma \vdash e_{1}\{v / x\}: \tau_{1}$. This therefore implies $\Gamma \vdash e\{v / x\}: \tau$ via the application rule.

- Case 4: a lambda abstraction
- Case 4a: $e=\lambda x: \tau^{\prime \prime} . e_{2}$.

Then $e\{v / x\}=e$. From the typing derivation of form $\Gamma, x: \tau^{\prime} \vdash \lambda x: \tau^{\prime \prime} . e_{2}: \tau$ where $\tau=\tau^{\prime \prime} \rightarrow \tau_{2}$, and the fact $\Gamma, x: \tau^{\prime}, x: \tau^{\prime \prime}=\Gamma, x: \tau^{\prime \prime}$, we have $\Gamma, x: \tau^{\prime \prime} \vdash e_{2}: \tau_{2}$, from which we can derive $\Gamma \vdash \lambda x: \tau^{\prime \prime} . e_{2}:$ $\tau^{\prime \prime} \rightarrow \tau_{2}$, as desired.

- Case 4b: $e=\lambda y: \tau^{\prime \prime} . e_{2}$.

Note that $y \notin F V(v)$, so $e\{v / x\}=\lambda y: \tau^{\prime \prime} . e_{2}\{v / x\}$ and the typing of e looks like the following, where $\tau=\tau^{\prime \prime} \rightarrow \tau_{2}:$

$$
\frac{\Gamma, x: \tau^{\prime}, y: \tau^{\prime \prime} \vdash e_{2}: \tau_{2}}{\Gamma, x: \tau^{\prime}, \vdash\left(\lambda y: \tau^{\prime \prime} . e_{2}\right): \tau^{\prime \prime} \rightarrow \tau_{2}}
$$

Therefore, we can derive $\Gamma, y: \tau^{\prime \prime}, x: \tau^{\prime} \vdash e_{2}: \tau_{2}$ and use the inductive hypothesis to obtain $\Gamma, y: \tau^{\prime \prime} \vdash$ $e_{2}\{v / x\}: \tau_{2}$. Therefore, $\Gamma \vdash\left(\lambda y: \tau^{\prime \prime} . e_{2}\{v / x\}\right): \tau$ and we are done.

3 Progress Lemma

To finish the proof of soundness for the typed lambda calculus, we weed to prove progress. The progress lemma captures the idea that we cannot get stuck when evaluating a well-formed expression.

Progress: $\vdash e: \tau \Longrightarrow e \in$ Value $\vee \exists e^{\prime} . e \longrightarrow e^{\prime}$
Proof: We use induction on the typing derivation of e. Remember the definition of an expression in λ^{\rightarrow} :

$$
e::=b|x| \lambda x: \tau . e \mid e_{0} e_{1}
$$

There are four cases:

- Case $e=b$: Trivial: $b \in$ Value.
- Case $e=x$: This case is not possible because we would have $\vdash x: \tau$ and from the empty environment we cannot assign any type to x.
- Case $e=\lambda x: \tau_{0} . e_{1}$: We have that $e \in$ Value.
- Case $e=e_{0} e_{1}$: We know that there is a typing derivation for $\vdash e_{0} e_{1}: \tau$ and this derivation must have the form:

$$
\frac{\vdash e_{0}: \tau^{\prime} \quad \vdash e_{1}: \tau^{\prime} \rightarrow \tau}{\vdash e_{0} e_{1}: \tau}
$$

By the induction hypothesis, $e_{0} \in$ Value $\vee \exists e_{0}^{\prime} . e_{0} \longrightarrow e_{0}^{\prime}$ and $e_{1} \in$ Value $\vee \exists e_{1}^{\prime} . e_{1} \longrightarrow e_{1}^{\prime}$.
We have four possibilities now:

- Both e_{0} and e_{1} are values. Since e_{0} is a value with an arrow type, it has to be an abstraction. Say e_{0} is $\lambda x \in \tau^{\prime} . e_{2}$ and e_{1} is some value v. Then

$$
e=\left(\lambda x \in \tau^{\prime} . e_{2}\right) v \longrightarrow e_{2}\{v / x\}
$$

so, $e^{\prime}=e_{2}\{v / x\}$ as desired.

- e_{0} is not a value. Then $\exists e_{0}^{\prime} \cdot e_{0} \longrightarrow e_{0}^{\prime}$ and we have

$$
\frac{e_{0} \longrightarrow e_{0}^{\prime}}{e_{0} e_{1} \longrightarrow e_{0}^{\prime} e_{1}}
$$

- e_{0} is some value v, but e_{1} is not a value. Then $\exists e_{1}^{\prime} \cdot e_{1} \longrightarrow e_{1}^{\prime}$ and we have

$$
\frac{e_{1} \longrightarrow e_{1}^{\prime}}{v e_{1} \longrightarrow v e_{1}^{\prime}}
$$

This finishes the proof.
We have shown how to prove a very simple type system sound. However, this same approach works on the more complex type systems we will see shortly.

