1 Introduction

In this lecture, we add constructs to the typed λ-calculus that allow working with more complicated data structures, such as pairs, tuples, records, sums and recursive functions. We also provide denotational semantics for these new constructs.

2 Recap - The Typed λ-Calculus $\lambda \rightarrow$

2.1 Syntax

$$
\begin{array}{llll}
\text { terms } & e & ::=n \mid \text { true } \mid \text { false } \mid \text { null }|x| e_{1} e_{2} \mid \lambda x: \tau . e \\
\text { types } & \tau & := & \text { int } \mid \text { bool } \mid \text { unit } \mid \tau_{1} \rightarrow \tau_{2} \\
\text { values } & v & ::=n \mid \text { true } \mid \text { false } \mid \text { null } \mid \lambda x: \tau . e \text { closed }
\end{array}
$$

2.2 Typing Rules

$$
\begin{array}{cccc}
\Gamma \vdash n: \text { int } & \Gamma \vdash \text { true }: \text { bool } & \Gamma \vdash \text { false }: \text { bool } & \Gamma \vdash \text { null }: \text { unit }
\end{array} \quad \Gamma, x: \tau \vdash x: \tau
$$

3 Simple Data Structures

Each data structure can be added by extending the syntax of expressions (e), types (τ) and values (v). The evaluation contexts (E) will also need to be extended, and evaluation and type derivation rules added to work with the new syntax.

3.1 Pairs

Syntax:

$$
\begin{aligned}
& e::= \\
& \tau::= \\
& v::= \\
& E::=\cdots\left|\left(\tau_{1}, e_{2}\right)\right| \# \mathbf{1} e \mid \# \mathbf{2} e \\
& \tau_{1} * \tau_{2} \\
& \hline\left.\cdots, v_{2}\right) \\
&(E, e)|(v, E)| \# \mathbf{1} E \mid \# \mathbf{2} E
\end{aligned}
$$

For every added syntactic form, we observe that we have expressions that introduce the form, and expressions that eliminate the form. In the case of pairs, the introduction expression is $\left(e_{1}, e_{2}\right)$, and the elimination expressions are $\# 1 e$ and \#2e.
Evaluation rules:

$$
\# \mathbf{1}\left(v_{1}, v_{2}\right) \longrightarrow v_{1} \quad \# \mathbf{2}\left(v_{1}, v_{2}\right) \longrightarrow v_{2}
$$

Note that these rules define eager evaluation, because we only select from a pair when both elements are already evaluated to a value.

Typing rules:

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash \# \mathbf{1} e: \tau_{1}} \quad \frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash \mathbf{2} e: \tau_{2}}
$$

3.2 Tuples

Syntax:

$$
\begin{aligned}
& e::=\cdots \\
& \tau::=\cdots \\
& v::=\cdots \\
& E::=\cdots \\
&\left.=\cdots, e_{1}, \ldots, e_{n}\right) \mid \# \mathbf{n} e \\
&\left(v_{1}, \ldots, v_{n}\right) \\
&\left(v_{1}, \ldots, v_{i-1}, E, e_{i+1}, \ldots, e_{n}\right) \mid \# \mathbf{n} E
\end{aligned}
$$

Evaluation rule:

$$
\# m\left(v_{1}, \ldots, v_{n}\right) \longrightarrow v_{m} \quad(1 \leq m \leq n)
$$

Typing rules:

$$
\frac{\Gamma \vdash e_{i}: \tau_{i} \quad i \in\{1, \ldots, n\}}{\Gamma \vdash\left(e_{1}, \ldots, e_{n}\right): \tau_{1} * \cdots * \tau_{n}} \quad \frac{\Gamma \vdash e: \tau_{1} * \cdots * \tau_{n}}{\Gamma \vdash \# m e: \tau_{m}} \quad(1 \leq m \leq n)
$$

3.3 Records

Syntax:

$$
\begin{aligned}
e & ::=\cdots\left|\left\{x_{1}=e_{1}, \ldots, x_{n}=e_{n}\right\}\right| e . x \\
\tau & ::=\cdots \mid\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\} \\
v & ::=\cdots \mid\left\{x_{1}=v_{1}, \ldots, x_{n}=v_{n}\right\} \\
E & ::=\cdots\left|\left\{x_{1}=v_{1}, \ldots, x_{i-1}=v_{i-1}, x_{i}=E, x_{i+1}=e_{i+1}, \ldots, x_{n}=e_{n}\right)\right| E . x
\end{aligned}
$$

Evaluation rule:

$$
\left\{x_{1}=v_{1}, \ldots, x_{n}=v_{n}\right\} \cdot x_{i} \longrightarrow v_{i} \quad(1 \leq i \leq n)
$$

Typing rules:

$$
\frac{\Gamma \vdash e_{i}: \tau_{i}, 1 \leq i \leq n}{\Gamma \vdash\left\{x_{1}=e_{1}, \ldots, x_{n}=e_{n}\right):\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}} \quad \frac{\Gamma \vdash e:\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}}{\Gamma \vdash e \cdot x_{i}: \tau_{i}} \quad(1 \leq i \leq n)
$$

3.4 Sums

Sums are useful for representing datatypes that can have multiple forms. For example, a tail of a list can either be another nonempty list or null.

Syntax:

$$
\begin{aligned}
e & ::= \\
\tau & ::=\cdots\left|\operatorname{inl}_{\tau_{1}+\tau_{2}} e\right| \mathbf{i n r}_{\tau_{1}+\tau_{2}} e \mid \text { case } e_{0} \text { of } x . e_{1} \mid y . e_{2} \\
v & ::=\cdots \mid \tau_{1}+\tau_{2} \\
E & ::=\cdots
\end{aligned}
$$

The inl and inr constructs are called left injection and right injection, respectively.
Evaluation rules:

$$
\text { case }\left(\operatorname{inl}_{\tau_{1}+\tau_{2}} v\right) \text { of } x . e_{1} \mid y . e_{2} \longrightarrow e_{1}\{v / x\} \quad \text { case }\left(\mathbf{i n r}_{\tau_{1}+\tau_{2}} v\right) \text { of } x . e_{1} \mid y . e_{2} \longrightarrow e_{2}\{v / y\}
$$

Here e_{1} and e_{2} are functions and must have the same codomain type in order for the whole case expression to have a type.

Typing rules:
$\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \mathbf{i n l}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \mathbf{i n r}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2}} \quad \frac{\Gamma \vdash e_{0}: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{1}: \tau_{3} \quad \Gamma, y: \tau_{2} \vdash e_{2}: \tau_{3}}{\Gamma \vdash \mathbf{c a s e} e_{0} \mathbf{o f} x . e_{1} \mid y . e_{2}: \tau_{3}}$
To give an example of the sum type, consider the sum of two unit types, unit + unit. This type has exactly two elements, namely inl null and inr null. We could take this as a definition of the type bool with elements true \triangleq inl null and false \triangleq inr null. The statement if b then e_{1} else e_{2} could then be written as case b of $z . e_{1} \mid z . e_{2}$.

SML and OCaml have variant or algebraic datatypes, which generalize sum types. (Variants in ML can also be recursive, which we will not model here.)

$$
\begin{array}{rll|l}
e & ::= & \cdots & x_{i}(e) \\
\tau & ::= & \cdots & \mid\left[x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right]
\end{array}
$$

Recall that the ML syntax is

```
datatype t = x1 of t1 | ... | xn of tn.
```

The xi are constructors, and must be globally (across all types) unique to avoid confusion as to which type a particular constructor is referring to (in our sum type, the confusion is alleviated by using $\tau_{1}+\tau_{2}$ subscripts in inl and inr).

4 Denotational Semantics

We now give the denotational semantics for type domains of $\lambda^{\rightarrow+*}$, the strongly-typed λ-calculus with sum and product types.

$$
\begin{aligned}
\mathcal{T} \llbracket \tau \rightarrow \tau^{\prime} \rrbracket & =\mathcal{T} \llbracket \tau \rrbracket \rightarrow \mathcal{T} \llbracket \tau^{\prime} \rrbracket \\
\mathcal{T} \llbracket \tau * \tau^{\prime} \rrbracket & =\mathcal{T} \llbracket \tau \rrbracket \times \mathcal{T} \llbracket \tau^{\prime} \rrbracket \\
\mathcal{T} \llbracket \tau+\tau^{\prime} \rrbracket & =\mathcal{T} \llbracket \tau \rrbracket+\mathcal{T} \llbracket \tau^{\prime} \rrbracket
\end{aligned}
$$

As before, our contract for this language is:

$$
\rho \vDash \Gamma \wedge \Gamma \vdash e: \tau \Rightarrow \mathcal{C} \llbracket \Gamma \vdash e: \tau \rrbracket \rho \in \mathcal{T} \llbracket \tau \rrbracket .
$$

The remaining semantic rules are:

$$
\begin{aligned}
\mathcal{C} \llbracket \Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2} \rrbracket \rho & =\left\langle\mathcal{C} \llbracket \Gamma \vdash e_{1}: \tau_{1} \rrbracket \rho, \mathcal{C} \llbracket \Gamma \vdash e_{2}: \tau_{2} \rrbracket \rho\right\rangle \\
\mathcal{C} \llbracket \Gamma \vdash \# \mathbf{1} e: \tau_{1} \rrbracket \rho & =\pi_{1}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{1} * \tau_{2} \rrbracket \rho\right) \\
\mathcal{C} \llbracket \Gamma \vdash \# \mathbf{2} e: \tau_{2} \rrbracket \rho & =\pi_{2}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{1} * \tau_{2} \rrbracket \rho\right) \\
\mathcal{C} \llbracket \Gamma \vdash \operatorname{inl}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \rrbracket \rho= & \mathrm{in}_{1}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{1} \rrbracket \rho\right) \\
\mathcal{C} \llbracket \Gamma \vdash \operatorname{inr}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \rrbracket \rho= & \operatorname{in}_{2}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{2} \rrbracket \rho\right) \\
\mathcal{C} \llbracket \Gamma \vdash \mathbf{c a s e} e_{0} \text { of } x . e_{1} \mid y \cdot e_{2}: \tau_{3} \rrbracket \rho= & \operatorname{case} \mathcal{C} \llbracket \Gamma \vdash e_{0}: \tau_{1}+\tau_{2} \rrbracket \rho \text { of } \\
& x_{1} \cdot\left(\mathcal{C} \llbracket \Gamma, x: \tau_{1} \vdash e_{1}: \tau_{3} \rrbracket \rho\left[x \mapsto x_{1}\right] \mid x_{2} .\left(\mathcal{C} \llbracket \Gamma, y: \tau_{2} \vdash e_{2}: \tau_{3} \rrbracket \rho\left[y \mapsto x_{2}\right]\right.\right.
\end{aligned}
$$

where π_{n} is the (mathematical) projection operator that selects the nth element of a product, in_{n} is the injection operator that injects an element into a coproduct, and $[\cdot, \cdot] \in\left(D_{1} \rightarrow D_{3}\right) *\left(D_{2} \rightarrow D_{3}\right) \rightarrow\left(D_{1}+D_{2} \rightarrow D_{3}\right)$

5 Adding Recursion

So far this language is not Turing-complete, because there is no way to do unbounded recursion. This is true because there is no possibility of nontermination. The easiest way to add this capability is to support recursive functions.

To do this, we first extend the definition of an expression:

$$
e \quad::=\cdots \mid \operatorname{rec} f: \tau \rightarrow \tau^{\prime} \cdot \lambda x: \tau . e
$$

The new keyword rec defines a recursive function named f such that both x and f are in scope inside e. Intuitively, the meaning of rec $f: \tau \rightarrow \tau^{\prime} . \lambda x: \tau . e$ is the least fixpoint of the map $f \mapsto \lambda x: \tau . e$, where both f and $\lambda x: \tau . e$ are of type $\tau \rightarrow \tau^{\prime}$.

For example, we would write the recursive function

$$
f(x)=\text { if } x>0 \text { then } 1 \text { else } f(x+1)
$$

as

$$
\text { rec } f: \text { int } \rightarrow \text { int. } \lambda x: \text { int. if } x>0 \text { then } 1 \text { else } f(x+1)
$$

The small-step operational semantics evaluation rule for rec simply unfolds it whenever it is needed:

$$
\operatorname{rec} f: \tau \rightarrow \tau^{\prime} . \lambda x: \tau . e \quad \rightarrow \quad \lambda x: \tau . e\left\{\left(\operatorname{rec} f: \tau \rightarrow \tau^{\prime} . \lambda x: \tau . e\right) / f\right\}
$$

and the typing rule for rec is

$$
\frac{\Gamma, f: \tau \rightarrow \tau^{\prime}, x: \tau \vdash e: \tau}{\Gamma \vdash\left(\operatorname{rec} f: \tau \rightarrow \tau^{\prime} \cdot \lambda x: \tau . e\right): \tau \rightarrow \tau^{\prime}} .
$$

The denotational semantics is defined in terms of the fix operator on domains:
$\mathcal{C} \llbracket \operatorname{rec} f: \tau \rightarrow \tau^{\prime} . \lambda x: \tau . e \rrbracket \rho=\quad$ fix $\lambda g \in \mathcal{T} \llbracket \tau \rightarrow \tau^{\prime} \rrbracket . \lambda v \in \mathcal{T} \llbracket \tau \rrbracket . \mathcal{C} \llbracket \Gamma, f: \tau \rightarrow \tau^{\prime}, x: \tau \vdash e: \tau^{\prime} \rrbracket \rho[x \mapsto v, f \mapsto g]$
Of course, whenever we take a fixed point, we have to make sure that a fixed point exists. We know that the function satisfies continuity and monotonicity because we are writing in the metalanguage. However, for a fixed point to exist, $\mathcal{T} \llbracket \tau \rightarrow \tau^{\prime} \rrbracket$ must be a pointed CPO. But for this to be true, we have to make sure \perp is in the codomain of the function:

$$
\mathcal{T} \llbracket \tau \rightarrow \tau \rrbracket=\mathcal{T} \llbracket \tau \rrbracket \rightarrow \mathcal{T} \llbracket \tau^{\prime} \rrbracket_{\perp}
$$

This will make the semantics of application potentially produce \perp, so we also have to change our contract to account for the possibility of nontermination:

$$
\rho \models \Gamma \wedge \Gamma \vdash e: \tau \quad \Rightarrow \quad \mathcal{C} \llbracket e \rrbracket \rho \in \mathcal{T} \llbracket \tau \rrbracket_{\perp} .
$$

Finally, we have to lift our semantics to take nontermination into account. For example, we should change the denotation of a pair to:

$$
\mathcal{C} \llbracket \Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2} \rrbracket \rho= \begin{cases}\left\lfloor\left\langle\mathcal{C} \llbracket e_{1} \rrbracket \rho, \mathcal{C} \llbracket e_{2} \rrbracket \rho\right\rangle\right\rfloor, & \text { if both } \mathcal{C} \llbracket e_{1} \rrbracket \rho \neq \perp \text { and } \mathcal{C} \llbracket e_{2} \rrbracket \rho \neq \perp, \\ \perp, & \text { otherwise } .\end{cases}
$$

We can write this more conveniently using our metalanguage let construct:

$$
\begin{gathered}
\mathcal{C} \llbracket \Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2} \rrbracket \rho=\text { let } v_{1} \in \mathcal{T} \llbracket \tau_{1} \rrbracket=\mathcal{C} \llbracket \Gamma \vdash e_{1}: \tau_{1} \rrbracket \rho \text { in } \\
\text { let } v_{2} \in \mathcal{T} \llbracket \tau_{2} \rrbracket=\mathcal{C} \llbracket \Gamma \vdash e_{2}: \tau_{2} \rrbracket \rho \text { in } \\
\left\lfloor\left\langle v_{1}, v_{2}\right\rangle\right\rfloor
\end{gathered}
$$

Recall that mathematical "let" is defined as:

$$
\text { let } x \in D=e_{1} \text { in } e_{2} \quad=\quad\left(\lambda x \in D \cdot e_{2}\right)^{*}\left(e_{1}\right)
$$

