1 Introduction

In Lecture 26, we proved that each term in the simply typed λ-calculus would never get stuck. Today, we want to show that it will actually terminate. This property is known as strong normalization.

Formally, we want to prove that if $\vdash e: \tau$, then $e \Downarrow$. We will prove this by induction, but we will need a fairly sophisticated induction hypothesis that takes both the typing and the reduction order into account. We cannot just do induction on the subterm relation. For example, even if e_{1} and e_{2} terminate, we cannot conclude that $e_{1} e_{2}$ does: consider $e_{1}=e_{2}=\lambda x . x x$.

2 Church vs. Curry

We will prove this theorem in the pure simply-typed λ-calculus in Curry style. This differs from Church style in that the binding occurrence of a variable in a λ-abstraction is not annotated with its type.

Let α, β, \ldots denote type variables, x, y, \ldots term variables, σ, τ, \ldots types, and d, e, \ldots terms. In the Currystyle simply typed λ-calculus, terms and types are defined by

$$
e::=x\left|e_{1} e_{2}\right| \lambda x . e \quad \tau::=\alpha \mid \sigma \rightarrow \tau
$$

and the typing rules are

$$
\Gamma, x: \tau \vdash x: \tau \quad \frac{\Gamma \vdash e: \sigma \rightarrow \tau \quad \Gamma \vdash d: \sigma}{\Gamma \vdash(e d): \tau} \quad \frac{\Gamma, x: \sigma \vdash e: \tau}{\Gamma \vdash(\lambda x . e): \sigma \rightarrow \tau}
$$

Note that in Church style, a closed term can have at most one type, but in Curry style, if it has any type at all, then it has infinitely many. For example, $\vdash \lambda x . x:((\alpha \rightarrow \beta) \rightarrow \gamma) \rightarrow((\alpha \rightarrow \beta) \rightarrow \gamma)$. In general, if $\vdash e: \tau$, then also $\vdash e: \tau^{\prime}$, where τ^{\prime} is any substitution instance of τ.

A term e is typable if there exists a type environment Γ and a type τ such that $\Gamma \vdash e: \tau$. One can show by induction that if $\Gamma \vdash e: \tau$, then $F V(e) \subseteq \operatorname{dom} \Gamma$.

3 Strong Normalization

By the Church-Rosser theorem, normal forms are unique up to α-equivalence, so any two reduction strategies starting from the same term that terminate must yield the same result up to α-equivalence. However, there may be some strategies that terminate and some that do not.

A term is strongly normalizing (SN) if all β-reduction sequences starting from that term converge to a normal form; equivalently, if there is no infinite β-reduction sequence starting from that term. Our main theorem is

Theorem 1. All typable terms are strongly normalizing.

3.1 Ultra-Strong Normalization

We say that a term e is ultra-strongly normalizing with respect to Γ and σ and write $\Gamma \vdash_{\text {USN }} e: \sigma$ if
(i) $\Gamma \vdash e: \sigma$
(ii) for all $n \geq 0$, if σ is of the form $\sigma_{1} \rightarrow \sigma_{2} \rightarrow \cdots \rightarrow \sigma_{n} \rightarrow \tau$ and $\Gamma \vdash_{U S N} e_{i}: \sigma_{i}, 1 \leq i \leq n$, then $e e_{1} e_{2} \cdots e_{n}$ is SN .

A term e is ultra-strongly normalizing (USN) if it is ultra-strongly normalizing with respect to some Γ and σ.

The definition of the relation $\vdash_{U S N}$ may seem circular, but it is not: $\Gamma \vdash_{U S N} e: \sigma$ is defined in terms of $\Gamma \vdash_{U S N} e_{i}: \sigma_{i}$, where the σ_{i} are strict subexpressions of σ, so it is well-defined by structural induction on types.

Almost all the work we need to do is contained in the following lemma:
Lemma 2. Let x_{1}, \ldots, x_{n} be distinct variables. If
(i) $\Gamma, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1} \vdash e: \tau$,
(ii) $\Gamma \vdash_{U S N} d_{i}: \sigma_{i}, 1 \leq i \leq n$, and
(iii) $x_{j} \notin F V\left(d_{i}\right)$ for $j>i$,
then $\Gamma \vdash_{U S N} e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \tau$.

Proof. Suppose the three premises (i)-(iii) hold. The proof is by induction on the structure of e.

Case 1 Variable x.

Case 1A $x=x_{i}$ for some i. We have $\tau=\sigma_{i}$ by assumption (i) and $x\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}=d_{i}$ by assumption (iii). The desired conclusion is therefore $\Gamma \vdash_{U S N} d_{i}: \sigma_{i}$, which follows from assumption (ii).

Case 1B $x \notin\left\{x_{1}, \ldots, x_{n}\right\}$. We have $\Gamma \vdash x: \tau$ by assumption (i), and $x\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}=x$. The desired conclusion is therefore $\Gamma \vdash_{U S N} x: \tau$. We already have $\Gamma \vdash x: \tau$, so we need only show that $x e_{1} \cdots e_{m}$ is SN for all appropriately typed USN terms e_{i}. But in any infinite β-reduction sequence starting from $x e_{1} \cdots e_{m}$, every reduction must be inside one of the e_{i}, since there are no other β-redexes; therefore some e_{i} must contain an infinite subsequence. But this is impossible, since the e_{i} are USN.

Case 2 Application $e_{1} e_{2}$. For some type σ,

$$
\begin{align*}
& \Gamma, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1} \vdash\left(e_{1} e_{2}\right): \tau \\
& \quad \Rightarrow \Gamma, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1} \vdash e_{1}: \sigma \rightarrow \tau \wedge \Gamma, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1} \vdash e_{2}: \sigma \\
& \quad \Rightarrow \Gamma \vdash_{U S N} e_{1}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma \rightarrow \tau \wedge \Gamma \vdash_{U S N} e_{2}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma \tag{1}
\end{align*}
$$

by the induction hypthesis. By clause (i) in the definition of USN, this implies

$$
\begin{aligned}
& \Gamma \vdash e_{1}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma \rightarrow \tau \wedge \Gamma \vdash e_{2}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma \\
& \quad \Rightarrow \quad \Gamma \vdash\left(e_{1} e_{2}\right)\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \tau
\end{aligned}
$$

This establishes clause (i) in the definition of USN for $e_{1} e_{2}$. For clause (ii), we must show that if $\tau=\tau_{3} \rightarrow$ $\cdots \rightarrow \tau_{m}$ and if $\Gamma \vdash_{U S N} e_{i}: \tau_{i}$ for $3 \leq i \leq m$, then

$$
\begin{align*}
& \left(e_{1} e_{2}\right)\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\} e_{3} \cdots e_{m} \\
& \quad=\left(e_{1}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right)\left(e_{2}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right) e_{3} \cdots e_{m} \tag{2}
\end{align*}
$$

is SN . But by (1),

$$
\begin{aligned}
& \Gamma \vdash_{U S N} e_{1}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma \rightarrow \tau_{3} \rightarrow \cdots \rightarrow \tau_{m} \\
& \Gamma \vdash_{U S N} e_{2}\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma \\
& \Gamma \vdash_{U S N} e_{i}: \tau_{i}, \quad 3 \leq i \leq m,
\end{aligned}
$$

thus (2) is SN. This proves that $\Gamma \vdash_{U S N}\left(e_{1} e_{2}\right)\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \tau$.

Case 3 Abstraction λx.e. We can assume without loss of generality that λx.e has been α-converted so that $x \notin F V\left(d_{i}\right)$ and $x \neq x_{i}$ for any $i, 1 \leq i \leq n$. Instead of x, let us call this bound variable x_{n+1}. Then for some σ_{n+1}, we have
(i) $\Gamma, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1} \vdash\left(\lambda x_{n+1} . e\right): \sigma_{n+1} \rightarrow \tau$,
(ii) $\Gamma \vdash_{U S N} d_{i}: \sigma_{i}, 1 \leq i \leq n$, and
(iii) $x_{j} \notin F V\left(d_{i}\right)$ for $j>i$ (including $j=n+1$),
and we wish to show $\Gamma \vdash_{U S N}\left(\lambda x_{n+1} \cdot e\right)\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma_{n+1} \rightarrow \tau$.
Starting from assumption (i), we have

$$
\begin{aligned}
& \Gamma, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1} \vdash\left(\lambda x_{n+1} \cdot e\right): \sigma_{n+1} \rightarrow \tau \\
& \quad \Rightarrow \quad \Gamma, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1}, x_{n+1}: \sigma_{n+1} \vdash e: \tau \\
& \quad \Rightarrow \quad \Gamma, x_{n+1}: \sigma_{n+1}, x_{n}: \sigma_{n}, \ldots, x_{1}: \sigma_{1} \vdash e: \tau
\end{aligned}
$$

If d_{n+1} is any term such that $\Gamma \vdash_{U S N} d_{n+1}: \sigma_{n+1}$, then by the induction hypothesis we have both

$$
\begin{align*}
& \Gamma, x_{n+1}: \sigma_{n+1} \vdash_{U S N} e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \tau \tag{3}\\
& \Gamma \vdash_{U S N} e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n+1} / x_{n+1}\right\}: \tau \tag{4}
\end{align*}
$$

For clause (i) in the definition of USN, starting from (3), we have

$$
\begin{aligned}
& \Gamma, x_{n+1}: \sigma_{n+1} \vdash e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \tau \\
& \quad \Rightarrow \quad \Gamma \vdash \lambda x_{n+1} \cdot\left(e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right): \sigma_{n+1} \rightarrow \tau \\
& \quad \Rightarrow \quad \Gamma \vdash\left(\lambda x_{n+1} \cdot e\right)\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}: \sigma_{n+1} \rightarrow \tau \quad \text { since } x_{n+1} \notin F V\left(d_{i}\right) .
\end{aligned}
$$

For clause (ii), we wish to show that if in addition to the assumptions (i)-(iii) above, $\tau=\sigma_{n+2} \rightarrow \cdots \rightarrow$ $\sigma_{m} \rightarrow \rho$ and $\Gamma \vdash_{U S N} d_{i}: \sigma_{i}, n+1 \leq i \leq m$, then

$$
\begin{aligned}
& \left(\lambda x_{n+1} \cdot e\right)\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\} d_{n+1} \cdots d_{m} \\
& \quad=\left(\lambda x_{n+1} \cdot\left(e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right)\right) d_{n+1} \cdots d_{m}
\end{aligned}
$$

is SN . Consider any infinite reduction sequence starting from this term. We know that $e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}$ is SN by (3), and we know that the d_{i} are SN by assumption, $n+1 \leq i \leq m$. Therefore, eventually a head reduction must be performed:

$$
\begin{aligned}
& \left(\lambda x_{n+1} \cdot\left(e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right)\right) d_{n+1} \cdots d_{m} \\
& \quad \xrightarrow{*}\left(\lambda x_{n+1} \cdot\left(e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right)^{\prime}\right) d_{n+1}^{\prime} \cdots d_{m}^{\prime} \\
& \quad \rightarrow \quad\left(e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right)^{\prime}\left\{d_{n+1}^{\prime} / x_{n+1}^{\prime}\right\} d_{n+2}^{\prime} \cdots d_{m}^{\prime} .
\end{aligned}
$$

But we could have done the head reduction initially:

$$
\begin{aligned}
& \left(\lambda x_{n+1} \cdot\left(e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right)\right) d_{n+1} \cdots d_{m} \\
& \quad \rightarrow \quad e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\left\{d_{n+1} / x_{n+1}\right\} d_{n+2} \cdots d_{m} \\
& \xrightarrow{*} \quad\left(e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\right)^{\prime}\left\{d_{n+1}^{\prime} / x_{n+1}\right\} d_{n+2}^{\prime} \cdots d_{m}^{\prime},
\end{aligned}
$$

leading to an infinite reduction sequence from $e\left\{d_{1} / x_{1}\right\} \cdots\left\{d_{n} / x_{n}\right\}\left\{d_{n+1} / x_{n+1}\right\} d_{n+2} \cdots d_{m}$. But this contradicts (4).

Proof of Theorem 1. Any typable term is USN: take $n=0$ in Lemma 2. Any term that is USN is SN: take $n=0$ in the definition of USN.

