
CS 6110 S11 Lecture 31 Strong Normalization 20 April 2011

1 Introduction

In Lecture 26, we proved that each term in the simply typed λ-calculus would never get stuck. Today, we
want to show that it will actually terminate. This property is known as strong normalization.

Formally, we want to prove that if ⊢ e : τ , then e ⇓. We will prove this by induction, but we will need a
fairly sophisticated induction hypothesis that takes both the typing and the reduction order into account.
We cannot just do induction on the subterm relation. For example, even if e1 and e2 terminate, we cannot
conclude that e1 e2 does: consider e1 = e2 = λx. xx.

2 Church vs. Curry

We will prove this theorem in the pure simply-typed λ-calculus in Curry style. This differs from Church
style in that the binding occurrence of a variable in a λ-abstraction is not annotated with its type.

Let α, β, . . . denote type variables, x, y, . . . term variables, σ, τ, . . . types, and d, e, . . . terms. In the Curry-
style simply typed λ-calculus, terms and types are defined by

e ::= x | e1 e2 | λx. e τ ::= α | σ → τ

and the typing rules are

Γ, x : τ ⊢ x : τ
Γ ⊢ e : σ → τ Γ ⊢ d : σ

Γ ⊢ (e d) : τ
Γ, x : σ ⊢ e : τ

Γ ⊢ (λx. e) : σ → τ

Note that in Church style, a closed term can have at most one type, but in Curry style, if it has any type
at all, then it has infinitely many. For example, ⊢ λx. x : ((α → β) → γ) → ((α → β) → γ). In general, if
⊢ e : τ , then also ⊢ e : τ ′, where τ ′ is any substitution instance of τ .

A term e is typable if there exists a type environment Γ and a type τ such that Γ ⊢ e : τ . One can show by
induction that if Γ ⊢ e : τ , then FV(e) ⊆ domΓ.

3 Strong Normalization

By the Church–Rosser theorem, normal forms are unique up to α-equivalence, so any two reduction strategies
starting from the same term that terminate must yield the same result up to α-equivalence. However, there
may be some strategies that terminate and some that do not.

A term is strongly normalizing (SN) if all β-reduction sequences starting from that term converge to a normal
form; equivalently, if there is no infinite β-reduction sequence starting from that term. Our main theorem is

Theorem 1. All typable terms are strongly normalizing.

3.1 Ultra-Strong Normalization

We say that a term e is ultra-strongly normalizing with respect to Γ and σ and write Γ ⊢
USN

e : σ if
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(i) Γ ⊢ e : σ

(ii) for all n ≥ 0, if σ is of the form σ1 → σ2 → · · · → σn → τ and Γ ⊢
USN

ei : σi, 1 ≤ i ≤ n, then
e e1 e2 · · · en is SN.

A term e is ultra-strongly normalizing (USN) if it is ultra-strongly normalizing with respect to some Γ and
σ.

The definition of the relation ⊢
USN

may seem circular, but it is not: Γ ⊢
USN

e : σ is defined in terms of
Γ ⊢

USN
ei : σi, where the σi are strict subexpressions of σ, so it is well-defined by structural induction on

types.

Almost all the work we need to do is contained in the following lemma:

Lemma 2. Let x1, . . . , xn be distinct variables. If

(i) Γ, xn : σn, . . . , x1 : σ1 ⊢ e : τ ,

(ii) Γ ⊢
USN

di : σi, 1 ≤ i ≤ n, and

(iii) xj /∈ FV(di) for j > i,

then Γ ⊢
USN

e{d1/x1} · · · {dn/xn} : τ .

Proof. Suppose the three premises (i)–(iii) hold. The proof is by induction on the structure of e.

Case 1 Variable x.

Case 1A x = xi for some i. We have τ = σi by assumption (i) and x{d1/x1} · · · {dn/xn} = di by
assumption (iii). The desired conclusion is therefore Γ ⊢

USN
di : σi, which follows from assumption (ii).

Case 1B x /∈ {x1, . . . , xn}. We have Γ ⊢ x : τ by assumption (i), and x{d1/x1} · · · {dn/xn} = x. The
desired conclusion is therefore Γ ⊢

USN
x : τ . We already have Γ ⊢ x : τ , so we need only show that x e1 · · · em

is SN for all appropriately typed USN terms ei. But in any infinite β-reduction sequence starting from
x e1 · · · em, every reduction must be inside one of the ei, since there are no other β-redexes; therefore some
ei must contain an infinite subsequence. But this is impossible, since the ei are USN.

Case 2 Application e1 e2. For some type σ,

Γ, xn : σn, . . . , x1 : σ1 ⊢ (e1 e2) : τ
⇒ Γ, xn : σn, . . . , x1 : σ1 ⊢ e1 : σ → τ ∧ Γ, xn : σn, . . . , x1 : σ1 ⊢ e2 : σ
⇒ Γ ⊢

USN
e1{d1/x1} · · · {dn/xn} : σ → τ ∧ Γ ⊢

USN
e2 {d1/x1} · · · {dn/xn} : σ (1)

by the induction hypthesis. By clause (i) in the definition of USN, this implies

Γ ⊢ e1{d1/x1} · · · {dn/xn} : σ → τ ∧ Γ ⊢ e2 {d1/x1} · · · {dn/xn} : σ
⇒ Γ ⊢ (e1 e2){d1/x1} · · · {dn/xn} : τ .
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This establishes clause (i) in the definition of USN for e1 e2. For clause (ii), we must show that if τ = τ3 →
· · · → τm and if Γ ⊢

USN
ei : τi for 3 ≤ i ≤ m, then

(e1 e2){d1/x1} · · · {dn/xn} e3 · · · em

= (e1 {d1/x1} · · · {dn/xn}) (e2 {d1/x1} · · · {dn/xn}) e3 · · · em (2)

is SN. But by (1),

Γ ⊢
USN

e1 {d1/x1} · · · {dn/xn} : σ → τ3 → · · · → τm

Γ ⊢
USN

e2 {d1/x1} · · · {dn/xn} : σ

Γ ⊢
USN

ei : τi, 3 ≤ i ≤ m,

thus (2) is SN. This proves that Γ ⊢
USN

(e1 e2){d1/x1} · · · {dn/xn} : τ .

Case 3 Abstraction λx. e. We can assume without loss of generality that λx. e has been α-converted so
that x /∈ FV(di) and x ̸= xi for any i, 1 ≤ i ≤ n. Instead of x, let us call this bound variable xn+1. Then
for some σn+1, we have

(i) Γ, xn : σn, . . . , x1 : σ1 ⊢ (λxn+1 . e) : σn+1 → τ ,

(ii) Γ ⊢
USN

di : σi, 1 ≤ i ≤ n, and

(iii) xj /∈ FV(di) for j > i (including j = n + 1),

and we wish to show Γ ⊢
USN

(λxn+1 . e){d1/x1} · · · {dn/xn} : σn+1 → τ .

Starting from assumption (i), we have

Γ, xn : σn, . . . , x1 : σ1 ⊢ (λxn+1 . e) : σn+1 → τ

⇒ Γ, xn : σn, . . . , x1 : σ1, xn+1 : σn+1 ⊢ e : τ
⇒ Γ, xn+1 : σn+1, xn : σn, . . . , x1 : σ1 ⊢ e : τ.

If dn+1 is any term such that Γ ⊢
USN

dn+1 : σn+1, then by the induction hypothesis we have both

Γ, xn+1 : σn+1 ⊢
USN

e{d1/x1} · · · {dn/xn} : τ (3)
Γ ⊢

USN
e{d1/x1} · · · {dn+1/xn+1} : τ. (4)

For clause (i) in the definition of USN, starting from (3), we have

Γ, xn+1 : σn+1 ⊢ e{d1/x1} · · · {dn/xn} : τ
⇒ Γ ⊢ λxn+1 . (e{d1/x1} · · · {dn/xn}) : σn+1 → τ

⇒ Γ ⊢ (λxn+1 . e){d1/x1} · · · {dn/xn} : σn+1 → τ since xn+1 /∈ FV(di).

For clause (ii), we wish to show that if in addition to the assumptions (i)–(iii) above, τ = σn+2 → · · · →
σm → ρ and Γ ⊢

USN
di : σi, n + 1 ≤ i ≤ m, then

(λxn+1 . e){d1/x1} · · · {dn/xn} dn+1 · · · dm

= (λxn+1 . (e{d1/x1} · · · {dn/xn})) dn+1 · · · dm
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is SN. Consider any infinite reduction sequence starting from this term. We know that e{d1/x1} · · · {dn/xn}
is SN by (3), and we know that the di are SN by assumption, n + 1 ≤ i ≤ m. Therefore, eventually a head
reduction must be performed:

(λxn+1 . (e{d1/x1} · · · {dn/xn})) dn+1 · · · dm

∗→ (λxn+1 . (e{d1/x1} · · · {dn/xn})′) d′n+1 · · · d′
m

→ (e{d1/x1} · · · {dn/xn})′ {d′n+1/xn+1} d′n+2 · · · d′
m.

But we could have done the head reduction initially:

(λxn+1 . (e{d1/x1} · · · {dn/xn})) dn+1 · · · dm

→ e{d1/x1} · · · {dn/xn}{dn+1/xn+1} dn+2 · · · dm

∗→ (e{d1/x1} · · · {dn/xn})′ {d′n+1/xn+1} d′n+2 · · · d′
m,

leading to an infinite reduction sequence from e{d1/x1} · · · {dn/xn}{dn+1/xn+1} dn+2 · · · dm. But this
contradicts (4).

Proof of Theorem 1. Any typable term is USN: take n = 0 in Lemma 2. Any term that is USN is SN: take
n = 0 in the definition of USN.
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