
CS 6110 S11 Lecture 29 Algorithmic Subtyping and Type Inference 15 April 2011

1 Algorithmic Subtyping

The subsumption rule poses a problem for implementers of languages with subtyping. Because it can be used
at any time during type checking, type checking is no longer syntax-directed. We can solve this problem by
folding the uses of the subsumption rule into existing typing rules, restoring the syntax-directed property.

The key is to notice that typing derivations can be put into a normal form. To see how this works, we
consider just → with subtyping. We show that any typing derivation in this language can be reduced to a
normal form in which subsumption only appears in two places:

1. a single use at the root of the derivation

2. on the right-hand (argument) premise of the application rule.

Suppose we have an arbitrary typing derivation that uses subsumption. Then we apply the following reduc-
tions to put it into this normal form.

First, we can eliminate successive uses of subsumption by taking advantage of the transitivity of subtyping:

A
Γ ⊢ e : τ ′′

B
τ ′′ ≤ τ ′

Γ ⊢ e : τ ′ Sub
C

τ ′ ≤ τ

Γ ⊢ e : τ
Sub =⇒

A
Γ ⊢ e : τ ′′

B
τ ′′ ≤ τ ′

C
τ ′ ≤ τ

τ ′′ ≤ τ
Trans

Γ ⊢ e : τ
Sub

We can also eliminate the gratuitous use of reflexive subtyping:

A
Γ ⊢ e : τ τ ≤ τ

Γ ⊢ e : τ =⇒
A

Γ ⊢ e : τ

If subsumption is used in the premise of the typing rule for a lambda, we can push it down toward the root:

A
Γ, x : τ ′ ⊢ e : τ ′′

B
τ ′′ ≤ τ

Γ, x : τ ′ ⊢ e : τ
Sub

Γ ⊢ λx : τ ′ . e : τ ′ → τ
Fun

=⇒

A
Γ, x : τ ′ ⊢ e : τ ′′

Γ ⊢ λx : τ ′ . e : τ ′ → τ ′′ Fun
τ ′ ≤ τ ′

B
τ ′′ ≤ τ

τ ′ → τ ′′ ≤ τ ′ → τ

Γ ⊢ λx : τ ′ . e : τ ′ → τ
Sub

If subsumption appears in the left premise of the typing rule for an application, we can push it down toward
the root and into the right premise:

A
Γ ⊢ e0 : τ ′

0 → τ0

B
τ ′ ≤ τ ′

0

C
τ0 ≤ τ

τ ′
0 → τ0 ≤ τ ′ → τ

Γ ⊢ e0 : τ ′ → τ
Sub

D
Γ ⊢ e1 : τ ′

Γ ⊢ e0 e1 : τ
App =⇒
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A
Γ ⊢ e0 : τ ′

0 → τ0

D
Γ ⊢ e1 : τ ′

B
τ ′ ≤ τ ′

0

Γ ⊢ e1 : τ ′
0

Sub

Γ ⊢ e0 e1 : τ0
App

C
τ0 ≤ τ

Γ ⊢ e0 e1 : τ
Sub

These reductions all have the effect of pushing subsumption toward the bottom of the derivation except
where it is used for the right-hand premise of App. The total height of all uses of subsumption within the
derivation (other than on right-hand premises in App) must decrease in each reduction. And we can see
that for any derivation not in normal form, one of the above reductions will always be possible. Therefore
there reductions will always terminate in a normal form.

Once we have the derivation in normal form, the single use of Sub at the bottom will mean that we derive
the smallest possible type for the program (smallest in the subtyping ordering ≤), then apply subsumption.
If we’re willing to accept this minimal typing for the term, then we don’t need the final use of subsumption
at all. The minimal type for a term in this language is a principal type: a “best possible” type that allows it
to be well-typed in any possible context that could use it. Having a principal type is an important property
for a type system, because it means that the type checker doesn’t have to try all possible types for a term,
and hence engage in exponential search.

Besides the final use of subsumption at the root, all other uses of subsumption are attached to uses of the
rule App:

. . .
Γ ⊢ e0 : τ ′ → τ

. . .
Γ ⊢ e1 : τ1

. . .
τ1 ≤ τ ′

Γ ⊢ e1 : τ ′ Sub

Γ ⊢ e0 e1 : τ
App

But we can capture the effect of these parts of the derivation by a single AppSub rule that folds in the
possible use of subsumption (it also works if the App didn’t use subsumption):

. . .
Γ ⊢ e0 : τ ′ → τ

. . .
Γ ⊢ e1 : τ1

. . .
τ1 ≤ τ ′

Γ ⊢ e0 e1 : τ
AppSub

This rule is clearly admissible, since anything that can be proved with it can be proved with the original
rules. And since we can reduce all typing derivations to derivations in normal form, we can type-check all
terms using just this rule, plus the usual rules for typechecking lambdas and variables. With just three rules,
one for each syntactic form, type checking is once again syntax-directed!

In general, when we design type checkers for languages with subtyping, we need to figure out how to fold
subsumption into typing rules with multiple premises. This is usually not difficult.

Though it’s straightforward for the types we have seen so far, deriving the relation τ1 ≤ τ2 can also be an
issue for languages with complex subtyping rules. For example, in the transitive rule, what should we pick
for the “middle” type? We can also normalize the derivation of subtyping to arrive at combined rules that
avoid having to make the choice.
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2 Type Inference

Type inference refers to the process of determining the appropriate types for expressions based on how they
are used. For example, OCaml knows that in the expression (f 3), f must be a function (because it is applied
to something, not because its name is f!) and that it takes an int as input. It knows nothing about the
output type. Therefore the type inference mechanism of OCaml would assign f the type int -> ’a.

# fun f -> f 3;;
- : (int -> ’a) -> ’a = <fun>

There may be many different occurrences of a symbol in an expression, all leading to different typing
constraints, and these constraints must have a common solution, otherwise the expression cannot be typed.

# fun f -> f (f 3);;
- : (int -> int) -> int = <fun>
# fun f -> f (f "hi");;
- : (string -> string) -> string = <fun>
# fun f -> f (f 3, f 4);;
Error: This expression has type ’a * ’a

but an expression was expected of type int

In the first example, how does it know that the output type of f is int? Because the input type of f is int,
and the output of f is fed into f again, so the output type of f has to be the same as the input type of f.

If a program is well-typed, then a type can be inferred. For example, consider the program

let square = λz. z ∗ z in
λf . λx. λy.

if (f x y)
then (f (square x) y)
else (f x (f x y))

We are applying the multiplication operator to z, therefore we must have z : int, thus λz. z ∗ z : int → int
and square : int → int. We know that the type of f must be something of the form f : σ → τ → bool for
some σ and τ , since it is applied to two arguments and its return value is used in a conditional test. Since
f is applied to the value of square x as its first argument, it must be that σ = int. Since f is applied to the
value of f x y as its second argument, it must be that τ = bool. The return value is also bool. Thus the
type of the entire program is (int → bool → bool) → int → bool → bool.

3 Unification

Both type inference and pattern matching in OCaml are instances of a very general mechanism called
unification. Briefly, unification is the process of finding a substitution that makes two given terms equal.
Pattern matching in OCaml is done by applying unification to OCaml expressions, whereas type inference is
done by applying unification to type expressions. It is interesting that both these procedures turn out to be
applications of the same general mechanism. There are many other applications of unification in computer
science; for example, the programming language Prolog is based on it.

The essential task of unification is to find a substitution S that unifies two given terms (that is, makes them
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equal). Let us write sS for the result of applying the substitution S to the term s. For example,

f(x, h(x, y)){g(y)/x, z/y} = f(g(y), h(g(y), z)),

where the substitution operator {g(y)/x, z/y} applied to a term simultaneously substitutes g(y) for x and z
for y. The substitution is simultaneous, not sequential. Sequential substitution would give a different result:

f(x, h(x, y)){g(y)/x}{z/y} = f(g(y), h(g(y), y)){z/y} = f(g(z), h(g(z), z)).

Thus, given s and t, we want to find S such that sS = tS. Such a substitution S is called a unifier for s and
t. For example, given the terms

f(x, g(y)) f(g(z), w) (1)

the substitution

S = {g(z)/x, g(y)/w} (2)

would be a unifier, since

f(x, g(y)){g(z)/x, g(y)/w} = f(g(z), w){g(z)/x, g(y)/w} = f(g(z), g(y)).

Note that this is a purely syntactic definition; the meaning of expressions is not taken into consideration
when computing unifiers.

Unifiers do not necessarily exist. For example, the terms x and f(x) cannot be unified, since no substitution
for x can make the two terms equal.

Even when unifiers exist, they are not unique. For example, the substitution

T = {g(f(a, b))/x, f(b, a)/y, f(a, b)/z, g(f(b, a))/w}

is also a unifier for the two terms (1):

f(x, g(y))T = f(g(z), w) T = f(g(f(a, b)), g(f(b, a))).

However, when a unifier exists, there is always a most general unifier (mgu) that is unique up to renaming.
A unifier S for s and t is a most general unifier (mgu) for s and t if

• S is a unifier for s and t,

• any other unifier T for s and t is a refinement of S; that is, T can be obtained from S by doing further
substitutions.

For example, the substitution S in the example above is an mgu for f(x, g(y)) and f(g(z), w). The unifier
T is a refinement of S, since T = S U , where

U = {f(a, b)/z, f(b, a)/y}.

Note that

f(x, g(y))S U = f(x, g(y)){g(z)/x, g(y)/w}{f(a, b)/z, f(b, a)/y}
= f(g(z), g(y)){f(a, b)/z, f(b, a)/y}
= f(g(f(a, b)), g(f(b, a)))
= f(x, g(y))T.

We can compose substitutions, as we did with S U . This is the substitution that first applies S, then applies
U to the result. The composition is also a substitution.
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4 Unification Algorithm

The unification algorithm is known as Robinson’s algorithm (1965). We need unification for not just for a
pair of terms, but more generally, for a set of pairs of terms. We say that a substitution S is a unifier for a
set of pairs {(s1, t1), . . . , (sn, tn)} if si S = ti S for all 1 ≤ i ≤ n.

The unification algorithm is given in terms of a function Unify that takes a set of pairs of terms (s, t) and
produces their mgu, if it exists. If E is a set of pairs of terms, then E {t/x} denotes the result of applying
the substitution {t/x} to all the terms in E.

• Unify({(x, t)} ∪ E)
△
= {t/x} Unify(E {t/x}) if x /∈ FV(t)

• Unify(∅)
△
= I (the identity substitution x 7→ x)

• Unify({(x, x)} ∪ E)
△
= Unify(E)

• Unify({(f(s1, . . . , sn), f(t1, . . . , tn))} ∪ E)
△
= Unify({(s1, t1), . . . , (sn, tn)} ∪ E).

In the first rule, {t/x} denotes the substitution that substitutes t for x, and {t/x} Unify(E {t/x}) denotes the
composition of {t/x} and Unify(E {t/x}). Since we write substitutions on the right, we follow the convention
that composition is from left to right; thus S T means, “do S, then do T”.

One circumstance that causes a set of terms not to unify is if it contains a pair (x, t) such that x ̸= t but x
occurs in t; then no substitution can make x and t equal.

5 Type Inference and Unification

Now we show how to do type inference using unification on type expressions. This technique gives the most
general type (mgt) of any typable term; any other type of this term is a substitution instance of its most
general type. Recall the Curry-style simply typed λ-calculus with syntax

e ::= x | e1 e2 | λx. e τ ::= α | τ1 → τ2

and typing rules

Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ
Γ ⊢ (e1 e2) : τ

Γ, x : σ ⊢ e : τ
Γ ⊢ λx. e : σ → τ

.

For the language of types, the last unification rule translates to

• Unify({(s → s′, t → t′)} ∪ E)
△
= Unify({(s, t), (s′, t′)} ∪ E).

The problem is that any type derivation starts with assumptions about the types of the variables in the
form of a type environment Γ, but without a type environment or an annotation as in Church style, we do
not know what these are. However, we can observe that the form of the subterms impose constraints on the
types. We can write down these constraints and then try to solve them.

Suppose we want to infer the type of a given λ-term e. Without loss of generality, suppose we have α-
converted e so that no variable is bound more than once and no variable with a binding occurrence λx also
occurs free.
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Let e1, . . . , em be an enumeration of all occurrences of subterms of e. We first assign a unique type variable
αi to each ei, 1 ≤ i ≤ m, as well as a unique type variable βx to each variable x. Then we take the following
constraints:

• if ei is an occurrence of a variable x, the constraint αi = βx;

• if ei is an occurrence of an application ej ek, the constraint αj = αk → αi; and

• if ei is an occurrence of an abstraction λx. ej , the constraint αi = βx → αj .

This gives us a list of pairs of type expressions representing type constraints imposed by the typing rules
above.

Now we do unification on the constraints and apply the resulting substitution to the type variable αe. The
result is the mgu of e.

5.1 An Example

Here is an example of the algorithm applied to the S combinator λxyz. xz(yz). Let us mark the second
occurrence of z as z′ to distinguish it from the first occurrence, although they are occurrences of the same
variable z. Thus S = λxyz. xz(yz′). Each occurrence of a subterm generates a constraint:

e1 = λx. λy. λz. xz(yz′) α1 = βx → α2

e2 = λy. λz. xz(yz′) α2 = βy → α3

e3 = λz. xz(yz′) α3 = βz → α4

e4 = xz(yz′) α5 = α8 → α4

e5 = xz α6 = α7 → α5

e6 = x α6 = βx

e7 = z α7 = βz

e8 = yz′ α9 = α10 → α8

e9 = y α9 = βy

e10 = z′ α10 = βz.

Solving these constraints using Robinson’s algorithm yields

α1 = (α7 → α8 → α4) → (α7 → α8) → α7 → α4

α2 = (α7 → α8) → α7 → α4

α3 = α7 → α4

α5 = α8 → α4

α6 = α7 → α8 → α4

α9 = α7 → α8

α10 = α7

βx = α7 → α8 → α4

βy = α7 → α8

βz = α7

so we see that the most general type of e1 is (α7 → α8 → α4) → (α7 → α8) → α7 → α4.
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